Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

函数功能编辑本段回目录ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)³。解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解.使用方法编辑本段回目录[T,Y]=ode45(odefun,tspan,y0)odefun是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名tspan是区间[t0tf]或者一系列散点[t0,t1,...,tf]y0是初始值向量T返回列向量的时间点的求解列向量[T,Y]=ode45(odefun,tspan,y0,options)《Simulink与信号处理》options是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等[T,Y,TE,YE,IE]=ode45(odefun,tspan,y0,options)在设置了事件参数后的对应输出=ode45(odefun,[t0tf],y0...)sol结构体输出结果应用举例编辑本段回目录1求解一阶常微分方程程序:一阶常微分方程odefun=@(t,y)(y+3*t)/t^2;%定义函数tspan=[14];%求解区间y0=-2;%初值[t,y]=ode45(odefun,tspan,y0);plot(t,y)%作图title('t^2y''=y+3t,y(1)=-2,1t4')legend('t^2y''=y+3t')xlabel('t')《Simulink与信号处理》ylabel('y')%精确解%dsolve('t^2*Dy=y+3*t','y(1)=-2')%ans=一阶求解结果图%(3*Ei(1)-2*exp(1))/exp(1/t)-(3*Ei(1/t))/exp(1/t)2求解高阶常微分方程关键是将高阶转为一阶,odefun的书写.F(y,y',y''...y(n-1),t)=0用变量替换,y1=y,y2=y'...注意odefun方程定义为列向量dxdy=[y(1),y(2)....]程序:functionTestode45tspan=[3.94.0];%求解区间y0=[28];%初值[t,x]=ode45(@odefun,tspan,y0);plot(t,x(:,1),'-o',t,x(:,2),'-*')legend('y1','y2')title('y''''=-t*y+e^t*y''+3sin2t')xlabel('t')ylabel('y')functiony=odefun(t,x)y=zeros(2,1);%列向量y(1)=x(2);y(2)=-t*x(1)+exp(t)*x(2)+3*sin(2*t);endend高阶求解结果图相关函数编辑本段回目录ode23,ode45,ode113,ode15s,ode23s,ode23t,ode23tbMatlab中龙格-库塔(Runge-Kutta)方法原理及实现(自己写的,非直接调用)龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。如果预先求两个点的斜率就是二阶龙格库塔法,如果预先取四个点就是四阶龙格库塔法。一阶常微分方程可以写作:y'=f(x,y),使用差分概念。(Yn+1-Yn)/h=f(Xn,Yn)推出(近似等于,极限为Yn')Yn+1=Yn+h*f(Xn,Yn)另外根据微分中值定理,存在0t1,使得Yn+1=Yn+h*f(Xn+th,Y(Xn+th))这里K=f(Xn+th,Y(Xn+th))称为平均斜率,龙格库塔方法就是求得K的一种算法。利用这样的原理,经过复杂的数学推导(过于繁琐省略),可以得出截断误差为O(h^5)的四阶龙格库塔公式:K1=f(Xn,Yn);K2=f(Xn+h/2,Yn+(h/2)*K1);K3=f(Xn+h/2,Yn+(h/2)*K2);K4=f(Xn+h,Yn+h*K3);Yn+1=Yn+h*(K1+2K2+2K3+K4)*(1/6);所以,为了更好更准确地把握时间关系,应自己在理解龙格库塔原理的基础上,编写定步长的龙格库塔函数,经过学习其原理,已经完成了一维的龙格库塔函数。仔细思考之后,发现其实如果是需要解多个微分方程组,可以想象成多个微分方程并行进行求解,时间,步长都是共同的,首先把预定的初始值给每个微分方程的第一步,然后每走一步,对多个微分方程共同求解。想通之后发现,整个过程其实很直观,只是不停的逼近计算罢了。编写的定步长的龙格库塔计算函数:function[x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数)n=floor((b-a)/h);%求步数x(1)=a;%时间起点y(:,1)=y0;%赋初值,可以是向量,但是要注意维数forii=1:nx(ii+1)=x(ii)+h;k1=ufunc(x(ii),y(:,ii));k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2);k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2);k4=ufunc(x(ii)+h,y(:,ii)+h*k3);y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6;%按照龙格库塔方法进行数值求解end调用的子函数以及其调用语句:functiondy=test_fun(x,y)dy=zeros(3,1);%初始化列向量dy(1)=y(2)*y(3);dy(2)=-y(1)+y(3);dy(3)=-0.51*y(1)*y(2);对该微分方程组用ode45和自编的龙格库塔函数进行比较,调用如下:[T,F]=ode45(@test_fun,[015],[113]);subplot(121)plot(T,F)%Matlab自带的ode45函数效果title('ode45函数效果')[T1,F1]=runge_kutta1(@test_fun,[113],0.25,0,15);%测试时改变test_fun的函数维数,别忘记改变初始值的维数subplot(122)plot(T1,F1)%自编的龙格库塔函数效果title('自编的龙格库塔函数')

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功