二次函数知识点总结及典型例题一、二次函数的概念和图像1、二次函数的概念一般地,如果)0,,(2acbacbxaxy是常数,,那么y叫做x的二次函数。)0,,(2acbacbxaxy是常数,叫做二次函数的一般式。2、二次函数的图像二次函数的图像是一条关于abx2对称的曲线,这条曲线叫抛物线。抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。3、二次函数图像的画法---五点法:二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2acbacbxaxy是常数,(2)顶点式:)0,,()(2akhakhxay是常数,(3)当抛物线cbxaxy2与x轴有交点时,即对应二次好方程02cbxax有实根1x和2x存在时,根据二次三项式的分解因式))((212xxxxacbxax,二次函数cbxaxy2可转化为两根式))((21xxxxay。如果没有交点,则不能这样表示。三、抛物线cbxaxy2中,cba,,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线cbxaxy2的对称轴是直线abx2,故:①0b时,对称轴为y轴所在直线;②0ab(即a、b同号)时,对称轴在y轴左侧;③0ab(即a、b异号)时,对称轴在y轴右侧.(3)c的大小决定抛物线cbxaxy2与y轴交点的位置.当0x时,cy,∴抛物线cbxaxy2与y轴有且只有一个交点(0,c):①0c,抛物线经过原点;②0c,与y轴交于正半轴;③0c,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0ab.四、二次函数的性质1、二次函数的性质函数二次函数)0,,(2acbacbxaxy是常数,图像a0a0y0xy0x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=ab2,顶点坐标是(ab2,abac442);(3)在对称轴的左侧,即当xab2时,y随x的增大而减小;在对称轴的右侧,即当xab2时,y随x的增大而增大,简记左减右增;(4)抛物线有最低点,当x=ab2时,y有最小值,abacy442最小值(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2,顶点坐标是(ab2,abac442);(3)在对称轴的左侧,即当xab2时,y随x的增大而增大;在对称轴的右侧,即当xab2时,y随x的增大而减小,简记左增右减;(4)抛物线有最高点,当x=ab2时,y有最大值,abacy442最大值五、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。因此一元二次方程中的ac4b2,在二次函数中表示图像与x轴是否有交点。当0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当0时,图像与x轴没有交点。补充:函数平移规律:左加右减、上加下减六、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx2时,abacy442最值。如果自变量的取值范围是21xxx,那么,首先要看ab2是否在自变量取值范围21xxx内,若在此范围内,则当x=ab2时,abacy442最值;若不在此范围内,则需要考虑函数在21xxx范围内的增减性,如果在此范围内,y随x的增大而增大,则当2xx时,cbxaxy222最大,当1xx时,cbxaxy121最小;如果在此范围内,y随x的增大而减小,则当1xx时,cbxaxy121最大,当2xx时,cbxaxy222最小。典型例题1.已知函数22113513xxyxx≤>,则使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.32.如图为抛物线2yaxbxc的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.a+b=-1B.a-b=-1C.b2aD.ac03.二次函数2yaxbxc的图象如图所示,则反比例函数ayx与一次函数ybxc在同一坐标系中的大致图象是().4.如图,已知二次函数cbxxy2的图象经过点(-1,0),(1,-2),当y随x的增大而增大时,x的取值范围是.5.在平面直角坐标系中,将抛物线223yxx绕着它与y轴的交点旋转180°,所得抛物线的解析式是().A.2(1)2yxB.2(1)4yxC.2(1)2yxD.2(1)4yx6.已知二次函数cbxaxy2的图像如图,其对称轴1x,给出下列结果①acb42②0abc③02ba④0cba⑤0cba,则正确的结论是xyO11(1,-2)cbxxy2-1()A①②③④B②④⑤C②③④D①④⑤7.抛物线2yaxbxc上部分点的横坐标x,纵坐标y的对应值如下表:x…-2-1012…y…04664…从上表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数2yaxbxc的最大值为6;③抛物线的对称轴是12x;④在对称轴左侧,y随x增大而增大.8.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连结OA.(1)求△OAB的面积;(2)若抛物线22yxxc经过点A.①求c的值;②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).9.已知二次函数y=14x2+32x的图像如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴、y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.10.如图,在平面直角坐标系xOy中,AB在x轴上,AB=10,以AB为直径的⊙O′与y轴正半轴交于点C,连接BC,AC.CD是⊙O′的切线,AD⊥CD于点D,tan∠CAD=21,抛物线cbxaxy2过A,B,C三点.(1)求证:∠CAD=∠CAB;(2)①求抛物线的解析式;②判定抛物线的顶点E是否在直线CD上,并说明理由;(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.11.如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B(-1,2),D(3,0),连接DM,并把线段DM沿DA方向平移到ON,若抛物线y=ax2+bx+c经过点D、M、N.(1)求抛物线的解析式(2)抛物线上是否存在点P.使得PA=PC.若存在,求出点P的坐标;若不存在.请说明理由。(3)设抛物线与x轴的另—个交点为E.点Q是抛物线的对称轴上的—个动点,当点Q在什么位置时有QEQC最大?并求出最大值。ABCDOENMxy图12.如图,抛物线y=21x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.13.在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a0)过矩形顶点B、C.(1)当n=1时,如果a=-1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,①试求出当n=3时a的值;②直接写出a关于n的关系式.NMFEyxCBAO图1图2图3yxCBAO…CD=1.15厘米yxCBAO…