因式分解一、基本概念因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.因式分解与整式乘法互为逆变形:()mabcmambmc整式的乘积因式分解式中m可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式.因式分解的常用方法:提取公因式法、运用公式法、分组分解法、十字相乘法.分解因式的一般步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式或十字相乘法,如还不能,就试用分组分解法或其它方法.注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止;②结果一定是乘积的形式;③每一个因式都是整式;④相同的因式的积要写成幂的形式.在分解因式时,结果的形式要求:①没有大括号和中括号;②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;③单项式因式写在多项式因式的前面;④每个因式第一项系数一般不为负数;⑤形式相同的因式写成幂的形式.二、提公因式法提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面.确定公因式的方法:系数——取多项式各项系数的最大公约数;字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.三、公式法平方差公式:22()()ababab①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:2222()aabbab2222()aabbab①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式;③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.一些需要了解的公式:3322()()ababaabb3322()()ababaabb33223()33abaababb33223()33abaababb2222()222abcabcabacbc四、十字相乘法十字相乘法:一个二次三项式2axbxc,若可以分解,则一定可以写成1122()()axcaxc的形式,它的系数可以写成12aa12cc,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a,b,c,使得:12aaa,12ccc,1221acacb,2()()()xabxabxaxb.若24bac不是一个平方数,那么二次三项式2axbxc就不能在有理数范围内分解.五、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.分式与分式方程一、分式的基本概念当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:①分式的分母中必然含有字母;②分式的分母的值不为0;③分式必然是写成两式相除的形式,中间以分数线隔开.二、分式有意义的条件两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x时,分式有意义;当0x时,分式无意义.三、分式的值为零分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.四、分式的基本性质分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:aambbm,aambbm(0m).注意:①在运用分式的基本性质时,基于的前提是0m;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.五、分式的乘除分式的乘法:acacbdbd.分式的除法:acadadbdbcbc.六、分式的乘方分式的乘方:()nnnnnaaaaaaaabbbbbbbb个个n个=(n为正整数).整数指数幂运算性质:①mnmnaaa(m、n为整数);②()mnmnaa(m、n为整数);③()nnnabab(n为整数);④mnmnaaa(0a,m、n为整数).负整指数幂:一般地,当n是正整数时,1nnaa(0a),即na(0a)是na的倒数.七、分式的加减运算法则同分母分式相加减:分母不变,把分子相加减,ababccc.异分母分式相加减:先通分,变为同分母的分式再加减,acadbcadbcbdbdbdbd.最简公分母:确定最简公分母的一般步骤:①取各分母系数的最小公倍数;②所出现的字母(或含字母的式子)为底的幂的因式都要取;③相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.八、分式的混合运算的运算顺序先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.九、分式方程及其求解分式方程:分母中含有未知数的方程叫做分式方程.分式方程求解步骤:①方程左右两边时乘最简公分母,化为整式方程;②解整式方程,得到x具体的值;③检验,将值代入最简公分母,若最简公分母为零,此值为增根;否则为方程的根.增根产生的原因:分式分母不能为零,而分式方程转化为整式方程后,最简公分母为零可能使方程成立.十、分式方程应用题分式方程应用题步骤:析、设、列、解、验.分式方程应用题验根:既要检验方程的根是否是增根,还应考虑题目中的实际意义.