三角形相关线段习题精选(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

三角形相关线段习题精选1、如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.2、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1+S2=3、如图,在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为.4、直角三角形两直角边长分别为5和12,则它的斜边上的高为.5、如图,中,,,,点D是BC的中点,将沿AD翻折得到,联结CE,那么线段CE的长等于.第5题图第6题图第7题图第9题图6、如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S△ABC=4,则S△BFF=_______7、如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=6,则S1-S2的值为_________.8、在△ABC中,AB=5,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9、如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条10、已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.1311、如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10B.11C.16D.2612、小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是()A.16cmB.17cmC.22cm或23cmD.11cm13、下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm,7cm,10cmB.5cm,7cm,13cmC.7cm,10cm,13cmD.5cm,10cm,13cm14、若等腰三角形的两边长分别为4和9,则它的周长为()A.22B.17C.13D.17或2215、如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是()A.9B.8C.7D.616、如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.617、已知三角形的两边分别为4和9,则此三角形的第三边可能是()18、如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的().A.高B.角平分线C.中线D.无法确定19、.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半20、下列长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.6cm,2cm,3cmC.4cm,6cm,8cmD.5cm,12cm,6cm21、若某三角形的三边长分别为3,5,,则的取值范围是()A.0<<9B.3<<9C.0<<7D.3<<722、若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7B.6C.5D.423、、如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1B.1:2:3C.2:3:4D.3:4:524、设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A.B.C.D.25、如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,点D到AB的距离是()A.2B.C.D.26、下列各组数可能是一个三角形的边长的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,1127、已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长差为6的两个三角形,则ΔABC各边的长分别变为______。A.10、10、4B.6、6、12C.4、5、10D.以上都不对28、为的三边,化简,结果是()29、如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.30、如图,△ACB中,∠ACB=90°,∠1=∠B.(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.31、如图所示,△BDC中,AB=8cm,AC=6cm,AD为BC边上的中线,求中线AD的取值范围.32、如图,在△ABC中,∠BCA是钝角,完成下列画图,并用适当的符号表示.(1)三角形的高AD;(2)三角形的高BE.33、已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q从点B开始沿BC边向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为x秒,(1)求几秒后,△PBQ的面积等于6cm2?(2)求几秒后,PQ的长度等于5cm?(3)运动过程中,△PQB的面积能否等于8cm2?说明理由.参考答案一、填空题1、6个.【解答】解:①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP时,在x轴、y轴上各有一点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.综上所述:符合条件的点P共有6个.2、73、24.【考点】三角形的面积.【分析】可设S△ADF=m,根据题中条件可得出三角形的面积与边长之间的关系,进而用m表示出△AEF,求出m的值,进而可得四边形的面积.【解答】解:如图,连AF,设S△ADF=m,∵S△BDF:S△BCF=6:9=2:3=DF:CF,则有m=S△AEF+S△EFC,S△AEF=m﹣6,而S△BFC:S△EFC=9:6=3:2=BF:EF,又∵S△ABF:S△AEF=BF:EF=3:2,而S△ABF=m+S△BDF=m+6,∴S△ABF:S△AEF=BF:EF=3:2=(m+6):(m﹣6),解得m=12.S△AEF=12,SADEF=S△AEF+S△ADF=12+12=24.故答案为:24.4、5、.6、17、18、5:3二、选择题9、C【解答】解:如图所示,当CA=CF=3,BC=BD=3,BC=CE=3,BG=CG,都能得到符合题意的等腰三角形.10、B11、C12、C【解答】解:根据等腰三角形的概念知,有两边相等,因而可以是两条边长为7或两条边长为8.当两条边长为7时,周长=7×2+8=22cm;当两条边长为8时,周长=8×2+7=23cm.13、B、14、A.15、D【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=AB×DE=×4×2=4,∵△ABC的面积为10,∴△ADC的面积为10﹣4=6,∴AC×DF=6,∴AC×2=6,∴AC=6故选:D.16、A【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3.17、C18、C19、B【考点】命题与定理.【分析】根据三角形的中线、高、角平分线的概念,知:不同形状的三角形的中线、角平分线总在三角形的内部;不同形状的三角形的高不一定总在三角形的内部;三角形的内角和是180°;直角三角形的斜边上的中线等于斜边的一半.【解答】解:A、钝角三角形的高在三角形的外部.故错误;B、根据内角和定理,可知三角形中至少有一个内角不小于60°.故正确;C、直角三角形有3条高,其中2条在它的直角边上.故错误;D、直角三角形斜边上的中线等于斜边的一半,故错误.故选B.20、C21、B22、C【考点】三角形三边关系.【分析】根据已知条件可以得到三角形的另外两边之和,再根据三角形的三边关系可以得到另外两边之差应小于4,则最大的差应是3,从而求得最大边.【解答】解:设这个三角形的最大边长为a,最小边是b.根据已知,得a+b=7.根据三角形的三边关系,得:a﹣b<4,当a﹣b=3时,解得a=5,b=2;故选:C.23、C24、D25、D26、C【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;27、A28、A三、简答题29、解:设AB=xcm,BC=ycm.有以下两种情况:(1)当AB+AD=12cm,BC+CD=15cm时,解得即AB=AC=8cm,BC=11cm,符合三边关系;(5分)(2)当AB+AD=15cm,BC+CD=12cm时,解得即AB=AC=10cm,BC=7cm,符合三边关系.30、31、、32、(画图略)四、综合题33、解:(1)=×(5﹣x)×2x=6整理得:x2﹣5x+6=0解得:x1=2,x2=3∴2或3秒后△PBQ的面积等于6cm2.(2)当PQ=5时,在Rt△PBQ中,∵BP2+BQ2=PQ2,∴(5﹣x)2+(2x)2=52,5x2﹣10x=0,x(5x﹣10)=0,x1=0,x2=2,∴当x=0或2时,PQ的长度等于5cm.(3)假设△PQB的面积等于8cm2则:×(5﹣x)×2x=8.整理得:x2﹣5x+8=0△=25﹣32=﹣7<0.∴△PQB的面积不能等于8cm2.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功