初中数学优秀说课稿大集合全部说课稿目录16.3《分式方程解法》说课稿17.2《反比例函数》说课稿18.1《探索勾股定理》第一课时说课稿18.1《勾股定理》说课稿《勾股定理》说课稿18.2《勾股定理的逆定理》说课稿19.1《平行四边形》的说课稿19.2.2《菱形(1)定义与性质》说课稿20.2《数据的波动》说课稿(第一课时)《除法》说课稿《矩形》(第一课时)说课稿《实际问题与反比例函数(第三课时)》教案说明《平行四边形的判定(1)》说课稿《分式的意义》说课稿“形的判定”说课稿菱形(第2课时)16.3《分式方程解法》说课稿《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为数学教学主导,在设计数学活动时要遵循以下原则:一、根据学生的年龄特征和认知特点组织教学。二、重视培养学生的应用意识和实践能力。1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。2、培养学生应用数学的意识和提高解决问题的能力。三、重视引导学生自主探索,培养学生的创新精神。1、引导学生动手实践、自主探索和合作交流。2、鼓励学生解决问题策略的多样化。四、教师对教学目标,难点,重点把握要恰当、具体。数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。一、设计思想:数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高二、背景分析:(一)学情分析:内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。(二)内容分析:本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。(三)教学方式:自学导读—同伴互助—精讲精练(四)教学媒体:Midea---Class纯软多媒体教学网几何画板三、教学目标:知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。教学重点:解分式方程的基本思路和解法。教学难点:理解分式方程可能产生增根的原因。设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。四、板书设计:a不是分式方程的解(二)学习方法:类比与转化教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。五、教学过程:活动1:创设情境,列出方程设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。活动2:总结定义,探究解法使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。活动3:讲练结合,分析增根活动5:布置作业,深化巩固(略)17.2反比例函数说课稿一、教材分析:反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。二、教学目标分析根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。三、教学重点难点分析本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;难点则是如何抓住特征准确画出反比例函数的图象。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。四、教学方法鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。五、学法指导本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。六、教学过程(一)复习引入——反函数解析式练习1:写出下列各题的关系式:(1)正方形的周长C和它的一边的长a之间的关系(2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系(3)矩形的面积为10时,它的长x和宽y之间的关系(4)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?通过问题2来引出反比例函数的解析式)0(kxky,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。例题1:已知变量y与x成反比例,且当x=2时,y=9(1)写出y与x之间的函数解析式(2)当x=3.5时,求y的值(3)当y=5时,求x的值通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为)0(kxky,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式(1)x=2,y=3(2)x=12,y=4通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。(二)探究学习1——函数图象的画法问题3:如何画出正比例函数的图象?通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。问题4:那反比例函数的图象应该怎样去画呢?在教学过程中可以引导学生仿照正比例函数图象的的画法。设想的教学设计是:(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数xy8和xy8的图象;(2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;(3)随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:(1)在“列表”这一环节在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。(2)在“连线”这一环节学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。从而引导学生画出正确的函数图象。(3)图象与x轴或y轴相交在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准