论文二——《数学模型》学习心得首先我要说的是学习数学模型的意义,说到意义就要说到它的价值,我们知道教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。当然现实一点讲,我认为学习数学模型的意义有如下几点:一我们是数学专业的学生,学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力;二学习数学模型我们可以出家数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化——能力培养代替了知识培养!这也是我们现代教育所追求的;三学习好数学建模这一学科可以让我们直接为某类工作服务,现在有很多企业都招数学建模工程师,这个职位最基本的要求就是需要有数学建模的能力,具体的可以参考本版块的招聘信息中的公司要求能力!我们可以依据这个能力,在大学期间把企业需要的能力培养起来,这样就真正实现了数学建模的价值,同时也极大地培养了我们学习数学建模的兴趣,这也是现代教育所要追求的即“让学生知道学习的目的,极大地发挥学生的主动学习性”;四这部分要说的就是比较乐观点的了,学习好数学模型可以为我们争取获得保送研究生的资格,亦可以为我们抓住出过留学的机会,现在的很多高校都十分重视数学建模这一块,所以把握好这一趋势也是十分必要的。接下来我想说说数学建模的基本步骤:一、问题分析。1、总体设计。将分析过程中的问题要点用文字记录下来;将问题结构化。2、合理分析、选取基本要素。3、启发式的思维方法。首先应集思广益充分发挥集体的力量,然后从各种角度分析考虑问题。二、合理假设。1、基本假设。变量、参数的定义,以及根据有关“规律”作出的变量间相互关系的假定。2、其他假设。暂忽略因素、限定系统边界、说明模型应用范围以及局部进程中的二次假设等。三、模型构造。四、模型求解和检验。我们这门课所学到的相关数学建模的一些类型大致为初等模型、简单的优化模型、数学规划模型、微分方程模型、稳定性模型、差分方程模型、离散模型、概率模型、统计回归模型等。其中所用到的方法大致为量纲分析方法、集合分析方法、线性规划方法、整体规划方法、非线性规划方法、微分方程方法、差分方程方法、差值与拟合方法、概率统计方法、回归分析方法等。学习中遇到的相关软件为MATIAB、LINGO、SAS软件等。我们都知道数学模型主要是将现实对象的信息加以翻译、归纳而得到的产物。我们通过对数学模型的假设、求解、验证,以得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。随着科学技术的迅速发展,数学模型这个词汇越来越多的出现在现代人的生产、工作和社会活动中。电气工程师必须建立所要控制的生产过程的数学模型,用这个模型对控制装置作出相应的设计和计算,才能实现有效的过程控制。生理学家通过对药物浓度在人体内随时间和空间的便把话而建立数学模型,如此就可以分析药物的疗效,有效地指导临床用药等等。这些都用到数学模型。而在学习数学模型这一课程之前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,数学发展到今天,我们这种陈旧的思考方式己经在被数学建模训练中培养出的角度多样化、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被我们把握,它就转化成了我们自身的素质,不仅在我们以后的学习工作中继续发挥作用,同时也为我们的成长道路铺了几块平坦的砖块。在我们现在看来数学建模所要解决的问题决一般不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅相关资料,除了要学习许多数学分支问题外,还要了解工厂生产、经济投资、消费水平等方面的知识,这些知识决不是任何专业中都能涉及得到的。如此,数学建模能极大地拓宽和丰富我们的内涵,让我们感到了学习和掌握知识的重要性,当然也让我们领悟到了“学习是不断发现真理的过程”这句话的真谛,这些知识必将为我们将来的学习工作打下坚实的基础。从现在我们的学习来看,我们都是直接受益者。就拿我们上次老师布置的利用层次分析法建立相关问题的模型。我们这一小组原本以为这是一件很简单的事,但做起来才发觉事情并没有想象中的简单。因为要解决这一问题,凭我们现有的知识根本不够。于是,我们必须要充分利用图书馆和网络的作用,查阅各种有关资料,以尽量获得比较全面的知识和信息。在这一程中,对自我们眼界的开阔,知识的扩展无疑大有好处,各学科的交叉渗透更有利于自己提高解决复杂问题的能力。毫不夸张的说,建模过程充分挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发出了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,数学建模也培养了我们的概括力和想象力,也就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,紧紧抓住问题的本质方面,使问题尽可能简单化,这样才能解决问题。小组合作也让我,深刻体会到了团队合作精神的重要性。建模的过程不仅仅取决于小组成员个人的基础和努力,更依赖的还是小组成员合作精神的发挥。既要发挥自己的优点,更不可忽视自己的缺点和同伴的优势,有时尽管感觉自己的设想是正确的,但是当自己的想法正处于少数情形时,这时要及时做到思想上的妥协,尽自己最大的努力去实现多数人的想法,这样才能成功。这也是团队合作的精髓。