龙源期刊网的三自由度机械手控制系统设计与实现作者:苏王平来源:《中国科技博览》2015年第24期[摘要]文章从三自由度机械手控制系统的角度入手,在plc可编程控制器支持下,对三自由度机械手控制系统的结构运动特点进行了简要分析,然后重点对plc下三自由度机械手控制系统的硬件、软件设计与实现要点展开研究,望能够使三自由度机械手控制系统的综合性能更加完善与可靠。[关键词]机械手三自由度控制系统PLC设计中图分类号:TK323文献标识码:A文章编号:1009-914X(2015)24-0033-02在工业化生产中,机械手能够对人的手臂部位动作进行模拟,操作人员可以通过预先设置机械手运行轨迹,动作程序等相关参数的方式,在实际工况中代替人手执行工件搬运、抓取、以及操持等相关工作,具有机电一体化的特点,在现代机械一体化领域中有着非常重要的应用价值。随着现代科学技术的不断发展与完善,机械手的应用范围也在不断扩大,为了能够满足现实工况对机械手操作的要求,当前已经成功研发了基于三自由度的机械手,即3D机器人。此类机械手能够支持对三个自由度方向(包括水平方向、垂直方向、以及旋转方向在内)的手臂操作,在机械化生产中具有操作灵活性好,应用范围广,以及操作范围大的特点。而通过引入plc的方式,能够使三自由度机械手控制系统的整体功能更为完善,以达到提高其综合使用价值的目的。1三自由度机械手控制系统结构运动特点下图(如图1)为三自由度机械手控制系统的基本结构示意图,整个控制系统结构具有圆柱坐标型特点。结合图1来看,控制系统内,伸缩步进电机可以实现对机械手手臂左右方向运动的控制,而升降步进电机则能够实现对机械手手臂上下方向运动的控制。逆时针和顺时针旋转运动则由底盘直流电机的正反转控制。机械手的夹紧装置采用关节结构,其夹紧与松开用气压驱动,并由电磁阀控制。图1中,SQ1、2、5、6分别为水平风向以及垂直方向上的限位开关装置,SQ3、4则为原点所对应的光接近开关以及终点所对应的光接近开关。在整个控制系统的运行中,操作人员可以通过预先设置操作程序的方式,实现对工件的搬运、抓取、以及操持等相关操作。2基于plc的硬件设计方法龙源期刊网从三自由度机械手实际应用的角度上来说,为了满足不同工况对系统运行所提出的要求,机械手需要同时支持自动工作以及手动工作两种运行模式。同时,在自动控制模式中,需要根据操作需求,支持包括返回原点、单步骤、单周期、以及连续性四种工作方式。在引入plc控制器的条件下,三自由度机械手控制系统优先选择具有晶体管输出特点的plc控制器装置(本文中选择三菱FX2N系列plc控制器)。该型号plc控制器共对应有10个信号输出点以及14个信号输入点,能够满足三自由度机械手控制系统对plc控制器中I/O点数的具体要求。且该型号plc控制器为晶体管输出,输出高速脉冲信号最高频率为100kHz,能够在系统运行过程当中直接面向步进电机驱动器提供脉冲信号支持。与之相对应的输入控制信号地址分配情况为:①复位信号对应输出地址分配为IO.0;②步进电机正转信号对应输出地址分配为IO.1;③步进电机反转信号对应输出地址分配为IO.2;④电机转动停止信号对应输出地址分配为IO.3;⑤手臂伸出信号对应输出地址分配为IO.4;⑥手臂收回信号对应输出地址分配为IO.5;⑦手抓下放信号对应输出地址分配为IO.6;⑧手抓提升信号对应输出地址分配为IO.7;⑨手抓开信号对应输出地址分配为I1.0;⑩手抓合信号对应输出地址分配为I1.1;?自动演示信号对应输出地址分配为I1.2。输出控制信号地址分配情况为:①步进电机脉冲输出信号对应输出地址分配为Q0.0;②步进电机转动方向信号对应输出地址分配为Q0.1;③气缸4#电磁阀控制信号对应输出地址分配为Q0.2;④气缸5#电磁阀控制信号对应输出地址分配为Q0.3;⑤气缸6#电磁阀控制信号对应输出地址分配为Q0.4。同时,步进电气驱动器选用SH-20403型。整个机械手控制系统的外部接线方案如下图所示(如图2)。结合图2来看,在三自由度机械手控制系统的运行过程当中,当机械手在最上方(最右方),同时底盘旋转至X3光接近开关,夹紧装置处于松开状态下时,整个控制系统处于自动控制模式下的原点控制状态下。如图2中,X10为系统手动控制按钮,操作该按钮,能够对X20~X27的按键开关进行手动控制。而X11~X15则分别为系统自动控制模式下返回原点状态按钮,单步骤状态按钮,单周期状态按钮,以及连续工作按钮,通过按下X11~X15任意操作按钮并启动X0的方式,能够执行相应的工作模式。3基于plc的软件设计方法在选择以单步骤、单周期、或连续工作方式运行前,整个控制系统应当处于原点状态,若未满足该条件,则需要选择返回原点的工作方式。在这一过程当中,相关操作指令的执行流程应当为:第一步,做上行方向移动至X1上限位;第二步,做右侧方向移动至X2右限位;第三步,做顺时针旋转移动至X3光接近开关装置;第四步,松开夹紧装置。在plc系统支持下,整个三自由度机械手控制系统的自动工作方式顺序功能可如下图所示(见图3)。结合图3,在控制系统对相关操作进行响应的过程当中,可通过对步进电机所输入脉冲频率参数进行调整的方式,实现对三自由度机械手手臂运动速度的合理调整。而脉冲数龙源期刊网则决定了机械手臂在沿下行方向以及做性方向运动的距离。而脉冲频率参数以及脉冲数的设计可以在工业现场实际工况中进行设定,具有重复操作的特点。整个基于plc系统的三自由度机械手控制系统在软件设计过程当中以基于plc技术的梯形图顺序编程为依据,脉冲个数基于MOV指令进行设定,脉冲输出则通过PLSY脉冲输出指令的方式进行设定。在指定脉冲输出完成后,指令执行完成标志M8029置1。需要注意的一点是,由于基于PLSY的操作指令仅能够使用一次,但控制系统中所配置的两个步进电机需要同时有脉冲输出信号。因此,在软件设计中,通过面向两个步进电机引入外部继电器的方式解决该问题。软件设计中,将Y0点输出脉冲与继电器动触点结合,常开触点则与电机驱动器脉冲信号输出端连接,上/下脉冲控制以及左/右脉冲控制则与两个外部继电器的控制端进行连接,根据这种方式,能够通过操作上/下脉冲控制以及左/右脉冲控制的方式,实现对步进电机脉冲输入的合理控制。与此同时,从基于plc系统的三自由度机械手控制系统复位操作角度上来说,软件设计中可应用特殊存储器SM0.1位以及按键10.0的方式进行控制。在plc控制器收次扫描的过程中,状态取值为1,可直接用于机械手控制系统的上电复位操作。同时,操作人员可以根据现场运行情况,对plc控制器所产生的PTO脉冲信号进行合理设置,并经过Q0.0输出点输出信号,实现复位指令。4结束语PLC可编程控制器是一种专门用于工业领域的电子控制装置,该电子控制装置是基于数字运算操作的方式所实现的。在PLC控制器的实际运行中,具有包括功能强大,可靠性高,编程简单,以及人机交互界面友好等多个方面的特点,在工业控制系统以及机电一体化产品设计中有着非常好的应用价值。本次研究中,从PLC的角度入手,对三自由度机械手控制系统的设计与实现进行了分析,该控制系统实现了电动式机械手与气动式机械手优点的融合,除了具有操作简单,定位精确的优势以外,还有效节约了行程开关以及I/O端口,综合优势非常确切。参考文献:[1]张铁异,何国金,黄振峰等.基于PLC控制的混合型气动机械手的设计与实现[J].液压与气动,2008,(9):6-8.[2]张志会,熊瑞平,冯烨等.一种基于PLC控制的五个自由度气动配料机械手[J].液压与气动,2010,(2):4-6.[3]宣自洋,陈书宏,常凯等.基于PLC控制的变速器搬运机械手系统设计[J].制造业自动化,2015,(4):6-8.龙源期刊网