九年级数学下册知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1九年级下册知识点第一章直角三角形边的关系1、正切:定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边。①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。(P1-6,11、P3-6、P4-12)2、正弦:定义:在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边;3、余弦:定义:在Rt△ABC中,锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边;4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则①sinA=cos(90°−∠A)等等。6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。(P4-13、P5-15,16、P10-11、P12-3)题6:计算:3122101+60tan30cos60cos45cot7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。0≤sinα≤1,0≤cosα≤1。同角的三角函数间的关系:tαnα·cotα=1,tanα=sinα/cosα,cotα=cosα/sinα,sin2α+cos2α=18、在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有:(1)三边之间的关系:a2+b2=c2;(2)两锐角的关系:∠A+∠B=90°;(3)边与角之间的关系:sinα等;(4)面积公式;(5)直角三角形△ABC内接圆⊙O的半径为(a+b-c)/2;(6)直角三角形△ABC外接圆⊙O的半径为c/2。(P18-13、P16-例5、P19-15)题7:小红的运动服被一个铁钉划破一个呈直角三角形的洞,其中两边分别为1cm和2cm,若用同色形布将此洞全部遮盖,那么这个圆的直径最小应等于()。A.2cmB.3cmC.2cm或3cmD.2cm或5cm题8:长为12cm的铁丝,围成边长为连续整数的直角三角形,则斜边上的中线为________cm。2题9:如图2,河对岸有铁塔AB.在C处测得塔顶A的仰角为30°,向塔前进14米到达D,在D处测得A的仰角为45°,求铁塔AB的高。图2题10:已知:四边形ABCD中,∠B=∠ADC=90°,AB=2、CD=1、∠A=60°,求:BC。图3第二章二次函数1、定义:一般地,如果cbacbxaxy,,(2是常数,)0a,那么y叫做x的二次函数。自变量的取值范围是全体实数。2、二次函数2axy的性质:(1)抛物线2axy的顶点是坐标原点,对称轴是y轴;(2)函数2axy的图像与a的符号关系:①当0a时抛物线开口向上顶点为其最低点;②当0a时抛物线开口向下顶点为其最高点。(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为2axy)(0a。(P21-12)3、二次函数cbxaxy2的图像是对称轴平行于(包括重合)y轴的抛物线。4、二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,。5、二次函数由特殊到一般,可分为以下几种形式:①2axy;②kaxy2;③2hxay;④khxay2;⑤cbxaxy2。6、抛物线的三要素:开口方向、对称轴、顶点。①a的符号决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同。②平行于y轴(或重合)的直线记作hx.特别地,y轴记作直线0x。(P23-9,10)7、顶点决定抛物线的位置。几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同。8、求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,∴顶点是),(abacab4422,对称轴是直线abx2。(P26-9)(2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是直线hx。3(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点。注意:用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失。题11:抛物线y=x2+6x+4的顶点坐标是()A.(3,-5)B.(-3,-5)C.(3,5)D.(-3,5)9、抛物线cbxaxy2中,cba,,的作用(P29-例2,1,10)(1)a决定开口方向及开口大小,这与2axy中的a完全一样。(2)b和a共同决定抛物线对称轴的位置。由于抛物线cbxaxy2的对称轴是直线。abx2,故:①0b时,对称轴为y轴;②0ab(即a、b同号)时,对称轴在y轴左侧;③0ab(即a、b异号)时,对称轴在y轴右侧。(3)c的大小决定抛物线cbxaxy2与y轴交点的位置。当0x时,cy,∴抛物线cbxaxy2与y轴有且只有一个交点(0,c):①0c,抛物线经过原点;②0c,与y轴交于正半轴;③0c,与y轴交于负半轴。以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0ab。10、几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbxaxy2abx2(abacab4422,)11、用待定系数法求二次函数的解析式(P32-12、P34-7,8、P37-2,4、P42-1,2、P51-例、P54-16)(1)一般式:cbxaxy2。已知图像上三点或三对x、y的值,通常选择一般式。(2)顶点式:khxay2.已知图像的顶点或对称轴,通常选择顶点式。(3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay。题12:已知关于x的一元二次方程x2-2(m-1)x+(m2-1)=0,有两个实数根x1、x2,且x12+x22=4.求m的值。题13:先化简,再求值:225632111333xxxxxx,其中x=3题14:在平面直角坐标系中,B(3+1,0),点A在第一象限内,且∠AOB=60°,∠ABO=45°。(1)求点A的坐标;(2)求过A、O、B三点的抛物线解析式;(3)动点P从O点出发,以每秒2个单位的速度沿OA运动到点A止,①若△POB的面积为S,写出S与时间t(秒)的函数关系;②是否存在t,使△POB的外心在x轴上,若不存在,请你说明理由;若存在,请求出t的值。4图412、直线与抛物线的交点(P47-5、P48-10,14)(1)y轴与抛物线cbxaxy2得交点为(0,c)。(2)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2)。(3)抛物线与x轴的交点。二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根。抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x轴上)0抛物线与x轴相切;③没有交点0抛物线与x轴相离。(4)平行于x轴的直线与抛物线的交点:同(3)一样可能有0个交点、1个交点、2个交点。当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根。(5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点,由方程组cbxaxynkxy2的解的数目来确定:①方程组有两组不同的解时l与G有两个交点;②方程组只有一组解时l与G只有一个交点;③方程组无解时l与G没有交点。(6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,,,xBxA,由于1x、2x是方程02cbxax的两个根,故:acxxabxx2121,aaacbacabxxxxxxxxAB444222122122121第三章圆1、定义:圆是平面上到定点距离等于定长的点的集合。其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。2、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则:①点在圆上===d=r;②点在圆内===dr;③点在圆外===dr。(P56-5,6、P58-16)证明若干个点共圆,就是证明这几个点与一个定点的距离相等。3、圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆是中心对称图形,对称中心为圆心。直径所在的直线是它的对称轴,圆有无数条对称轴。(P58-4、P59-9、P61-3、P63-16、P65-15)54、与圆相关的概念:①弦和直径。弦:连接圆上任意两点的线段叫做弦。直径:经过圆心的弦叫做直径。②圆弧、半圆、优弧、劣弧。圆弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示,半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。优弧:大于半圆的弧叫做优弧。劣弧:小于半圆的弧叫做劣弧。(为了区别优弧和劣弧,优弧用三个字母表示。)③弓形:弦及所对的弧组成的图形叫做弓形。④同心圆:圆心相同,半径不等的两个圆叫做同心圆。⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。⑦圆心角:顶点在圆心的角叫做圆心角。⑦弦心距:从圆心到弦的距离叫做弦心距。5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。6、定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。7、1°的弧的概念:把顶点在圆心的周角等分成360份时,每一份的角都是1°的圆心角,相应的整个圆也被等分成360份,每一份同样的弧叫1°弧。圆心角的度数和它所对的弧的度数相等。8、圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角。圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;(P66-5,7、P68-16)9、确定圆的条件:①理解确定一个圆必须的具备两个条件:圆心和

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功