1七年级数学下册期末复习专题试题类比归纳专题:二元一次方程组的解法选择——学会选择最优的解法◆类型一解未知数系数含1或-1的方程组1.(湘潭期末)方程组x-1=0,x+1=y的解是()A.x=1,y=2B.x=1,y=-2C.x=2,y=1D.x=0,y=-12.(冷水江期末)方程组x+y=4,2x-y=2的解是________.3.解方程组:(1)(甘孜中考)x-y=2①,x+2y=5②;(2)2x+y=3①,3x-5y=11②.4.下面是老师在嘉嘉的数学作业本上截取的部分内容:解方程组2x-y=3①,x+y=-12②.解:将方程①变形,得y=2x-3③,……第一步把方程③代入方程①,得2x-(2x-3)=3,……第二步整理,得3=3,……第三步因为x可以取任意实数,所以原方程组有无数个解……第四步问题:(1)这种解方程组的方法叫____________.嘉嘉的解法正确吗?若不正确,错在哪一步?请你指出错误的原因,求出正确的解;(2)请用不同于(1)中的方法解这个方程组.◆类型二解同一未知数的系数含倍数关系的方程组5.解方程组:(1)5x-6y=-1①,3x+2y=5②;(2)3x-4y=-18①,9x+5y=-3②.◆类型三利用整体思想解方程组(或求与未知数相关的代数式的值)6.(邵阳县一模)已知2x+3y=5,x+2y=3,则2016+x+y=________.7.解方程组:3x+4y=2①,4x+3y=5②.28.若方程组3x+y=1+3a①,x+3y=1-a②的解满足x+y=0,求a的值.◆类型四含字母系数的方程组的运用9.已知x=2,y=1是二元一次方程组mx+ny=8,nx-my=1的解,则2m-n的值为()A.-2B.2C.4D.-410.(邵阳洞口县期中)已知方程组2x+y=3,kx+2y=4-k的解x与y之和为1,则k=________.11.已知关于x,y的方程组ax+by=3,bx+ay=7的解是x=2,y=1,求a+b的值.12.已知关于x,y的二元一次方程(a-1)x+(a-2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.13.已知方程组2x+y=-2,ax+by=-4和方程组3x-y=12,bx+ay=-8的解相同,求(5a+b)2的值.◆*类型五解方程组的特殊方法14.解方程组5(x+y)-3(x-y)=2,2(x+y)+4(x-y)=6,若设x+y=A,x-y=B,则原方程组可变形为5A-3B=2,2A+4B=6,解得A=1,B=1,再解方程组x+y=1,x-y=1,得x=1,y=0.我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫作换元法,请用这种方法解方程组x+y2+x-y3=6,2(x+y)-3(x-y)=24.3解题技巧专题:方程组中较复杂的实际问题◆类型一图表问题1.如图,一个多边形的顶点全在格点上,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中三角形ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S=________,N=________,L=________;(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,则S的值为________.2.某中学2016年通过“废品回收”活动筹集钱款资助贫困中、小学生共23名,资助一名中学生的学习费用需a元,一名小学生的学习费用需b元,各年级学生筹款数额及用其恰好资助中、小学生人数的部分情况如下表:年级筹款数额(元)资助贫困中学生人数(名)资助贫困小学生人数(名)七年级400024八年级420033九年级7400(1)求a,b的值;(2)九年级学生筹集的钱款解决了其余贫困中、小学生的学习费用,求出九年级学生资助的贫困中、小学生人数分别为多少.◆类型二方案问题3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用篱笆围成,现有长为35米的篱笆,爸爸的设计方案是长比宽多5米;妈妈的设计方案是长比宽多2米,你认为谁的设计合理,为什么?如果按这种设计,养鸡场的面积是多少?4.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?4解题技巧专题:整式乘法及乘法公式中公式的巧用◆类型一利用公式求值一、逆用幂的相关公式求值1.已知5x=3,5y=4,则5x+y的结果为()A.7B.12C.13D.142.如果(9n)2=312,则n的值是()A.4B.3C.2D.13.若x2n=3,则x6n=________.4.(湘潭期末)已知ax=3,ay=2,求ax+2y的值.5.计算:-82015×(-0.125)2016+0.253×26.二、多项式乘法中求字母系数的值6.如果(x+m)(x-3)中不含x的项,则m的值是()A.2B.-2C.3D.-37.(邵阳县期中)若(x-5)(2x-n)=2x2+mx-15,则m,n的值分别是()A.m=-7,n=3B.m=7,n=-3C.m=7,n=3D.m=-7,n=-38.已知6x2-7xy-3y2+14x+y+a=(2x-3y+b)(3x+y+c),试确定a,b,c的值.三、逆用乘法公式求值9.若x=1,y=12,则x2+4xy+4y2的值是()A.2B.4C.32D.1210.已知a+b=3,则a2-b2+6b的值为()A.6B.9C.12D.1511.(衡阳中考)已知a+b=3,a-b=-1,则a2-b2的值为9.12.已知x+y=3,x2-y2=21,求x3+12y3的值.四、利用整体思想求值13.若x+y=m,xy=-3,则化简(x-3)(y-3)的结果是()A.12B.3m+6C.-3m-12D.-3m+614.先化简,再求值:(1)(菏泽中考)已知4x=3y,求代数式(x-2y)2-(x-y)(x+y)-2y2的值;(2)已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值.◆类型二利用乘法公式进行简便运算515.计算2672-266×268得()A.2008B.1C.2006D.-116.已知a=7202,b=719×721,则()A.a=bB.abC.abD.a≤b17.计算:(1)99.8×100.2;(2)1022;(3)5012+4992;(4)19992-1992×2008.◆类型三利用乘法公式的变形公式进行化简求值18.如果x+y=-5,x2+y2=13,则xy的值是()A.1B.17C.6D.2519.若a+b=-4,ab=12,则a2+b2=________.20.(永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2-ab-bc-ac的值为________.21.已知(x+y)2=5,(x-y)2=3,求3xy-1的值.◆类型四整式乘法中的拼图问题22.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b223.如图,边长为(m+2)的正方形纸片剪出一个边长为m的正方形之后余下部分又剪开拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,其面积是()A.2m+4B.4m+4C.m+4D.2m+224.★如图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中阴影部分的正方形的边长是多少?(2)请你用两种不同的方法求图②中阴影部分的面积;(3)观察图②,你能写出下列三个代数式(m+n)2,(m-n)2,mn之间的等量关系吗?(4)根据(3)中的结论,解决下列问题:若a+b=9,a-b=7,求ab的值.6类比归纳专题:因式分解的方法◆类型一一步(提公因式或套公式)1.(自贡中考)多项式a2-4a分解因式,结果正确的是()A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-42.把下列多项式因式分解:(1)(台州中考)x2-6x+9;(2)(a-b)2-4b2.◆类型二两步(先提后套或需多次分解)3.(常德澧县期末)把x2y-2y2x+y3分解因式正确的是()A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)24.因式分解:【易错6】(1)2a3-8a2+8a;(2)(邵阳县校级期中)16x4-81y4;(3)(y2-1)2+6(1-y2)+9.◆*类型三特殊的因式分解法5.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n).(1)试完成下面填空:x2-y2-2y-1=x2-(y2+2y+1)=____________=____________________;(2)试用上述方法分解因式:a2-2ab-ac+bc+b2.6.阅读与思考:将式子x2-x-6分解因式.这个式子的常数项-6=2×(-3),一次项系数-1=2+(-3),这个过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:x2+7x-18=________________;(2)填空:若x2+px-8可分解为两个一次因式的积,则整数p的所有可能值是__________________.7.阅读:分解因式x2+2x-3.解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1).上述因式分解的方法可以称之为配方法.请体会配方法的特点,然后用配方法分解因式:(1)x2-4x+3;(2)4x2+12x-7.7解题技巧专题:平行线中作辅助线的方法◆类型一含一个拐点的平行线问题1.(天门中考)如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°第1题图第2题图2.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为()A.20°B.30°C.40°D.70°3.(金华中考)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是________.第3题图第4题图4.如图,AB∥CD,∠A=120°,∠1=70°,则∠D的度数为________.5.小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.◆类型二含多个拐点的平行线问题6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°第6题图第7题图