浙江工业大学材料力学第8章答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1018.1试从图示受力构件中的A点处取出一单元体,标记单元体各面上的应力。解:(b)σσ(a)στ(c)τ(d)τ8.2已知图示各单元体上的应力,试用解析法求斜截面上的应力。应力单位为MPa。30°7070ab30°50100aaaab30°30°204030°10050ab30°7070ab50203030°bb(a)(c)(d)(b)(e)(f)(g)30°6040b45°解:(a)3007070,,,MPaMPaMPaxyyx故,MPaMPaxyyxxyyxyx6.602cos2sin2352sin2cos22(b)3007070,,,MPaMPaMPaxyyx故,MPaMPaxyyxxyyxyx02cos2sin2702sin2cos22(c)60050100,,,MPaMPaMPaxyyx故,MPaMPaxyyxxyyxyx7.212cos2sin25.622sin2cos22(d)150010050,,,MPaMPaMPaxyyx102故,MPaMPaxyyxxyyxyx0.652cos2sin25.122sin2cos22(e)6020040,,,MPaMPaMPaxyyx故,MPaMPaxyyxxyyxyx3.272cos2sin23.272sin2cos22(f)30205030,,,MPaMPaMPaxyyx故,MPaMPaxyyxxyyxyx7.182cos2sin23.522sin2cos22(g)4540600,,,MPaMPaMPaxyyx故,MPaMPaxyyxxyyxyx302cos2sin2102sin2cos228.3试用图解法求题8.2所示各单元体斜截面上的应力。解:(a)MPa3560cos70,MPa6.6060sin70;(b)MPa70,MPa0;(c)MPa5.6260cos2575,MPa7.2160sin25;(a)O(70,0)(-70,0)τ/MPaσ/MPa(σ,τ)60°(b)O(70,0)τ/MPaσ/MPaO(100,0)(50,0)τ/MPaσ/MPa(σ,τ)(c)120°(d)MPa5.1260cos7525,MPa0.6560sin75;(e)MPa3.2775cos22020,MPa3.2775sin220;(f))MPa3.52604.63180cos10204022,)MPa7.18604.63180sin102022O(100,0)(-50,0)τ/MPaσ/MPa(σ,τ)(d)120°(g)MPa104030,MPa301038.4图示二向应力状态,已知各单元体上的应力(单位为MPa),求(1)主应力的大小和方向,并画出主单元体;(2)最大切应力大小和方向。402010403030405203060202010302020(a)302560(c)503020(d)(b)(e)(g)(h)(f)解:(a)MPa020152522max,MPa5020152522min故,021,MPa5036.261520210atg-50-500MPa25201522max(b)MPa302015522max,MPa202015522min故,MPa301,02,MPa2034.63152021900atg-20300MPa25201522max104(c)MPa0.372025522max,MPa0.272025522min故,MPa371,02,MPa2737.70252021900atgMPa0.32202522max(d)MPa4.6220104022max,MPa6.1720104022min故,MPa4.621,MPa6.172,033.58102021900atgMPa4.22201022max(e)MPa2.7425154522max,MPa8.1525154522min故,MPa2.741,MPa8.152,035.291525210atgMPa2.29251522max(f)MPa6.43053522max,MPa4.653053522min故,01,MPa6.42,MPa4.6533.40530210atgMPa4.3030522max105(g)MPa3.820202022max,MPa3.4820202022min故,MPa3.81,02,MPa3.4835.67202021900atgMPa3.28202022max(h)MPa4.7230303022max,MPa4.1230303022min故,MPa4.721,MPa02,MPa4.1235.67303021900atgMPa4.42303022max8.5试证明通过A的任意截面不存在正应力及切应力。解:A点为尖点,则至少有两个方位不存在正应力和切应力,不妨假设方位为和(),由02cos2sin202sin2cos22xyyxxyyxyx和02cos2sin202sin2cos22xyyxxyyxyx则必然有0xyyx8.6试用图解法确定图示单元体的主应力及其方向、最大切应力。解:(a)应力圆如图,其中30tanx,故331x;应力圆半径为:332R。故主应力为)313323311ABCFF1063313323312;03最大切应力为332max(b)应力圆如图,其中)4060cos20xx,故MPax60;应力圆半径为:MPaR40。故主应力为MPa10040601;MPa2040602;03最大切应力为MPa40max8.7图示绕带式圆柱形压力容器,绕带与容器轴线成角度α=75°,容器内半径r=0.8m、壁厚t=12mm、内压p=2.2MPa。试确定:(1)容器的周向及纵向应力;(2)容器中最大的切应力;(3)焊缝上的正应力与切应力。解:在焊缝斜面上的一点,取一单元体,如图。轴向(纵向)应力x和环向(周向)应力y分别为MPatpDx3.7312416002.24MPatpDy7.14612216002.22容器中最大的切应力:MPa3.7327.146231max焊缝上的正应力与切应力:MPaMPayxyxyx4.1830sin28.14130cos2215158.8试求出图示单元体的三个主应力,画出单元体的三向应力圆并求出最大切应力。解:(a)MPa4.6530230402304022max,MPa6.430230402304022min故,MPaMPaMPa06.44.65321,,MPa7.32204.65231max(b)MPa50max,MPa50min故,MPaMPaMPa505080321,,σxσy107)MPa6525080231max(c)MPa7.574023023022max,MPa7.274023023022min故,MPaMPaMPa7.27507.57321,,)MPa7.4227.277.57231max8.9图示一橡胶制成的直径为d的圆柱体,置于钢制圆柱孔B中,压力为P。试确定橡胶与钢制圆柱孔间的压强p。已知P=4.6kN,d=50mm,橡胶的泊松比45.0。解:在圆柱体上的一点取一单元体,设竖直方向应力为z,其它两个方向的应力为x和y,且pyx。MPaAPz34.250460042另外,0yx。由广义胡克定律,有)))MPapEppEzzzyxx92.1108.10在一块厚钢板上挖了一个贯穿的槽,槽的深度和宽度都是10mm,在槽内紧密无隙地嵌入了铝质立方块,它的尺寸是10mm×10mm×10mm,并受P=6kN的压力,试求立方块内的三个主应力。假设厚钢板不变形,铝的泊松比3.0。解:在立方块上的一点取一单元体,设竖直方向应力为z,其它两个方向的应力为x和y,且0y。MPaAPz6010106000另外有,0x。由广义胡克定律,有))MPaEExxzyxx1806003.0故,MPaMPaMPa60180321,,8.11一直径mmd50的实心铜圆柱,放入壁厚为mmt1的钢筒内,铜柱和钢筒光滑接触。铜柱沿轴线承受压力F=200kN。巳知铜的泊松比μ=0.32,铜和钢的弹性模量分别为Ec和Es,并且Es=2Ec。试求铜柱和钢筒中的主应力。(提示:当圆柱承受沿半径方向的均匀压力p时,其中任一点的径向应力和环向应力均为p。解:在实心铜圆柱上一点取一单元体,设竖直方向应力为z,其它两个方向的应力为pryx。MPaAFz9.1015020000042(b)5080(0,50)(0,-50)(80,0)τ/MPaσ/MPaPBP101010108由广义胡克定律,有)))czczczrrrEpEppE1钢筒的环向应力为tpd2,其它两个方向的主应力为0。故钢筒的环向应变为tEpdEss2根据定义,有ddrrr,)dddd,故r代入,可得)MPatdpz47.245068.09.10132.045068.09.10132.041故实心铜圆柱:MPaMPaMPa9.10147.247.2321,,钢筒:MPaMPaMPa0085.61321,,8.12从钢构件内某一点取出单元体如图所示。已知MPa30,MP

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功