2017年高考真题分类汇编(理数)解析几何

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2017年高考真题分类汇编(理数):专题5解析几何一、单选题(共6题;共12分)1、(2017•浙江)椭圆+=1的离心率是()A、B、C、D、2、(2017•新课标Ⅲ)已知双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A、﹣=1B、﹣=1C、﹣=1D、﹣=13、(2017·天津)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A、=1B、=1C、=1D、=14、(2017•新课标Ⅰ卷)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A、16B、14C、12D、105、(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A、2B、C、D、6、(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A、B、C、D、二、填空题(共6题;共6分)7、(2017•北京卷)若双曲线x2﹣=1的离心率为,则实数m=________.8、(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是________.9、(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是________.10、(2017•新课标Ⅰ卷)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.11、(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=________.12、(2017•山东)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.三、解答题(共8题;共50分)13、(2017·天津)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.14、(2017•北京卷)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.15、(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(Ⅰ)求点P的轨迹方程;(Ⅱ)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.16、(2017•山东)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(14分)(Ⅰ)求椭圆E的方程.(Ⅱ)如图,该直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且看k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.17、(2017•浙江)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.18、(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.19、(2017•新课标Ⅰ卷)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.20、(2017•新课标Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.答案解析部分一、单选题1、【答案】B【考点】椭圆的简单性质【解析】【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【分析】直接利用椭圆的简单性质求解即可.2、【答案】B【考点】椭圆的标准方程,椭圆的简单性质,双曲线的标准方程,双曲线的简单性质【解析】【解答】解:椭圆+=1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,可得,即,可得=,解得a=2,b=,所求的双曲线方程为:﹣=1.故选:B.【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.3、【答案】B【考点】斜率的计算公式,两条直线平行的判定,双曲线的简单性质【解析】【解答】解:设双曲线的左焦点F(﹣c,0),离心率e==,c=a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=±x=±x,则经过F和P(0,4)两点的直线的斜率k==,则=1,c=4,则a=b=2,∴双曲线的标准方程:;故选B.【分析】由双曲线的离心率为,则双曲线为等轴双曲线,即渐近线方程为y=±x,根据直线的斜率公式,即可求得c的值,求得a和b的值,即可求得双曲线方程.4、【答案】A【考点】抛物线的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,故选:A【分析】根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.5、【答案】A【考点】直线与圆相交的性质,双曲线的简单性质,圆与圆锥曲线的综合【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.6、【答案】A【考点】圆的标准方程,直线与圆的位置关系,椭圆的简单性质【解析】【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e===.故选:A.【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.二、填空题7、【答案】2【考点】双曲线的标准方程,双曲线的简单性质【解析】【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【分析】利用双曲线的离心率,列出方程求和求解m即可.8、【答案】[-5,1]【考点】平面向量数量积的运算,直线和圆的方程的应用【解析】【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0+6y0+30≤0,即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.9、【答案】2【考点】双曲线的简单性质【解析】【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.10、【答案】【考点】双曲线的简单性质【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.11、【答案】6【考点】抛物线的简单性质【解析】【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.【分析】求出抛物线的焦点坐标,推出M坐标,然后求解即可.12、【答案】y=±x【考点】抛物线的标准方程,抛物线的简单性质,双曲线的标准方程,双曲线的简单性质,圆锥曲线的综合【解析】【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴yA+yB=,∵|AF|+|BF|=4|OF|,∴yA+yB+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.三、解答题13、【答案】(Ⅰ)解:设F的坐标为(﹣c,0).依题意可得,解得a=1,c=,p=2,于是b2=a2﹣c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),联立方程组,解得点P(﹣1,﹣),故Q(﹣1,).联立方程组,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣.∴B(,).∴直线BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令y=0,解得x=,故D(,0).∴|AD|=1﹣=.又∵△APD的面积为,∴×=,整理得3m2﹣2|m|+2=0,解得|m|=,∴m=±.∴直线AP的方程为3x+y﹣3=

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功