反比例函数与一次函数交点问题-习题及详解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共13页)反比例函数与一次函数交点问题1.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.2.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.第2页(共13页)3.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)求△COD的面积;(3)直接写出k1x+b﹣≥0时自变量x的取值范围.(4)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,求点P的坐标.4.如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式≥kx的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.第3页(共13页)5.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.第4页(共13页)6.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.第5页(共13页)2018年05月16日157****9624的初中数学组卷参考答案与试题解析一.解答题(共6小题)1.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题;K3:三角形的面积.菁优网版权所有【解答】解:(1)分别把A(m,6),B(3,n)代入得6m=6,3n=6,解得m=1,n=2,所以A点坐标为(1,6),B点坐标为(3,2),分别把A(1,6),B(3,2)代入y=kx+b得,解得,所以一次函数解析式为y=﹣2x+8;(2)当0<x<1或x>3时,;(3)如图,当x=0时,y=﹣2x+8=8,则C点坐标为(0,8),第6页(共13页)当y=0时,﹣2x+8=0,解得x=4,则D点坐标为(4,0),所以S△AOB=S△COD﹣S△COA﹣S△BOD=×4×8﹣×8×1﹣×4×2=8.2.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.【考点】G8:反比例函数与一次函数的交点问题.菁优网版权所有【解答】解:(1)∵直线y=k1x+b过A(0,﹣2),B(1,0)两点∴,∴∴一次函数的表达式为y=2x﹣2.(3分)∴设M(m,n),作MD⊥x轴于点D第7页(共13页)∵S△OBM=2,∴,∴∴n=4(5分)∴将M(m,4)代入y=2x﹣2得4=2m﹣2,∴m=3∵M(3,4)在双曲线上,∴,∴k2=12∴反比例函数的表达式为(2)过点M(3,4)作MP⊥AM交x轴于点P,∵MD⊥BP,∴∠PMD=∠MBD=∠ABO∴tan∠PMD=tan∠MBD=tan∠ABO==2(8分)∴在Rt△PDM中,,∴PD=2MD=8,∴OP=OD+PD=11∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)3.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD第8页(共13页)的中点.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)求△COD的面积;(3)直接写出k1x+b﹣≥0时自变量x的取值范围.(4)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.菁优网版权所有【解答】解:(1)∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=;如图,作DE⊥x轴于E,∵D(2,﹣3),点B是线段AD的中点,∴A(﹣2,0),∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,,解得k1=﹣,b=﹣,∴;(2)由,解得,,第9页(共13页)∴C(﹣4,),∴S△COD=S△AOC+S△AOD=×2×+×2×3=;(3)由图可得,当k1x+b﹣≥0时,x<﹣4或0<x<2.(4)作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,∴由C'和D的坐标可得,直线C'D为,令x=0,则y=﹣,∴当|PC﹣PD|的值最大时,点P的坐标为(0,).4.如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式≥kx的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.第10页(共13页)【考点】G8:反比例函数与一次函数的交点问题.菁优网版权所有【解答】解:(1)把A(m,﹣2)代入y=,得﹣2=,解得m=﹣1,∴A(﹣1,﹣2)代入y=kx,∴﹣2=k×(﹣1),解得,k=2,∴y=2x,又由2x=,得x=1或x=﹣1(舍去),∴B(1,2),(2)∵k=2,∴≥kx为≥2x,根据图象可得:当x≤﹣1和0<x≤1时,反比例函数y=的图象恒在正比例函数y=2x图象的上方,即≥2x.(3)①当点C在第一象限时,△OAC不可能为等边三角形,②如图,当C在第三象限时,要使△OAC为等边三角形,则OA=OC,设C(t,)(t<0),∵A(﹣1,﹣2)∴OA=∴t2+=5,则t4﹣5t2+4=0,∴t2=1,t=﹣1,此时C与A重合,舍去,t2=4,t=﹣2,∴C(﹣2,﹣1),而此时AC=,AC≠AO,∴不存在符合条件的点C.第11页(共13页)5.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】G8:反比例函数与一次函数的交点问题.菁优网版权所有【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)设P点坐标为(t,t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).第12页(共13页)6.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.【考点】G8:反比例函数与一次函数的交点问题.菁优网版权所有【解答】解:(1)将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4=,解得:b=5,k=4;(2)一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1,(3)过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,第13页(共13页)∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴,∵,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△PAC=OP•CD+OP•AE=OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功