多选题与排序题的SPSS处理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

多选题和排序题的SPSS处理在问卷设计中,常见的题型包括单选题、多选题、排序题和问答题。其中单选题是最常见的题型,实践中可通过频数统计,箱型图及各种高级统计方法对其进行分析,流行的统计软件SPSS中也包含多个用于处理单选题的模块。问答题作为主观题,通常不进行编码和统计分析,只作为定性研究来处理。多选题和排序题是两种常见的题型,多选题的优势是它可以广泛的搜集被访者的态度信息,探索不同人群的态度组合,为进一步编制或修订量表提供依据。排序题可以同时测查被访者对多个选项的态度倾向。SPSS中虽然有处理多选题的模块“MultipleResponse”,但是其功能相对简单,只能对多选题进行一般的频数统计和列联表分析。有些学者对多选题的数据编码提出了改进方法,提高了数据录入转换的效率,但是对多选题如何进行分析处理研究得不够深入。以下内容将讨论多选题和排序题的分类,以及如何在SPSS中实现它们的编码和分析过程。一、多选题的处理方法多选题可分为不定项多选题和定项多选题,它们有不同的编码和处理方式。1.不定项多选题这是最常见的多选题方式,即一道题目有多个选项,每个选项都可以勾选或者不选。例1:你在选购电子产品时,会考虑以下哪些因素:A价格B性能C质量D保修E外观F品牌编码:对于这种题型,通常的采用“0-1”编码进行处理,即为每个选项单独设立一个变量,本例可设定a1_1,a1_2到a1_6共6个变量,它们代表从A、B到F共6个备选选项。如果被试的选择为ABD,则在a1_1,a1_2和a1_4中输入1,其他变量输入0。其他学者也提出了用某些函数或编程方法快速实现数据的录入,但最终都要转换为“0-1”编码的形式。分析:完成编码后,使用SPSS中的Analyse———MultipleResponse命令,再通过DefineSets来将多个选项合并定义为一个多选题,如例1中可将6个变量共同定义为$a1。然后选择Analyse———MultipleResponse———Frequencies可对多选题进行频数统计,选择Analyse———MultipleResponse———Crosstables可进行交叉列联表分析。2.定项多择题与不定多选择题相比,唯一区别是固定了要选出的答案个数。例2:你认为在选购电子产品时,最重要的3个影响因素是什么?1(A)2(B)3(D)A价格B性能C质量D保修E外观F品牌编码:将题目中的3个括号定义为3个变量,如a2n1,a2n2和a2n3,他们代表最终选出的3个答案。6个备选项也要重新编码,如1、2、3、4、5、6分别代表A、B、C、D、E、F。如果被试的选择为ABD,则在a2n1,a2n2和a2n3分别输入1、2和4。图1显示的是7个被试答题后的编码情况。图1定项多选题案例数据分析:完成编码后,使用SPSS中的Analyse———MultipleResponse命令,再通过DefineSets将a2n1,a2n2和a2n3共同定义为$a2,在编码方式(Variablearecodedas)中选择分类编码(Categories),类别从1到5。然后选择Analyse———MultipleResponse———Frequencies可对多选题进行频数统计。结果如图2所示:图2定项多选题案例处理结果小结:例1所用的处理方法,其思路是先定选项,后记次数;例2的处理方法,其思路是先定次序,后填选项。前者是多选题通用的处理方式,包括不定项多选题、定项多选题,甚至一些不常用的限定条件的多选题(如规定答案不能超过3项)等;后者是针对定项选择题的一种特殊的分析方法,具有简便高效的特点,但是通常不适用于其他题型。二、排序题的处理方法1.排序题要求将若干选项按照一定的标准依次排列,可测查被试群体的态度倾向例3:下列是选购电子产品时需要考虑的若干因素,请按照重要性对他们进行排序。A价格B性能C质量D保修E外观F品牌(③)(⑤)(①)(②)(④)(⑥)编码:将题目中的6个选项定义为6个变量,如a3_1,a3_2到a3_6,它们代表从A、B到F共6个备选选项。如果某个被试在题中括号内填写的结果为“3,5,1,2,4,6”,即他认为从重要到不重要的次序是:质量、外观、价格、性能、保修、品牌。那么在编码处理时,应将3、5、1、2、4、6依次填入a3_1,a3_2到a3_6的6个变量中。首先根据各个次序的重要性(权重)对数据进行二次编码,例如次序1、2、3、4、5、6的重要性依次是10、7、5、2、1,0,则选择SPSS中的Transform———RecodeintoSameVariables命令,将所有变量选入Variables对话框,点击OleandNewvalues,将1填入旧数值,将10填入新数值,表示排名第一的选项具有10个单位的重要性,准备对“1-10”这一组编码的转换。然后单击Add健继续对余下的“2-7”、“3-5”、“4-2”、“5-1”、“6-0”五组编码进行输入,单击Continue———Ok可一并完成各组的转换过程。图3排序题案例数据经过二次编码后,选择Date———Transpose命令,对全部数据进行行列转换。再选择Transform———ComputeVariables命令,定义新变量Sum=sum(Var001toVar007),即可求出各个备选选项的重要性排序。结果如图4所示:图4排序题计算结果结果显示:各选项的重要性排序为:BACDEF。2.选择排序题这种题型结合了多选题和排序题的优点,先从若干备选选项中提取出若干个最重要的选项,然后再进行排序。与多选题相比,在答案中增加了顺序信息,因此内容更丰富。例4:你认为在选购电子产品时,最重要的3个影响因素是什么?请选出并按重要性对它们进行排序:A价格B性能C质量D保修E外观F品牌第1位(C)第2位(D)第3位(A)编码:与例3的方式很相似,但由于未被选择的题项无法参加排序,因此对它们要进行一些处理。将题目中的6个选项定义为6个变量,如a4_1,a4_2到a4_6,它们代表从A、B到F共6个备选选项。如果某个被试的排序的结果为C、D、A,即依次选出的最重要3个因素是:质量、保修、价格。那么在编码处理时,应将3、0、1、2、0、0依次填入a3_1,a3_2到a3_6的6个变量中。也就是说:对于被选中并排序的选项,在它对应的变量里面填它的次序;对于未被选中的选项,在它对应的变量里面填0。实际上,本例中答案选择的结果可表示为另一种更直观的形式,它类似于例3的样子。例4:你认为在选购电子产品时,最重要的3个影响因素是什么?请选出并按重要性对它们进行排序:A价格B性能C质量D保修E外观F品牌(③)()(①)(②)()()分析:方法与例3相同,只是未被选中的选项将不参与二次编码,因为在排序重要性计算中,它们的权重为0。排序题和选择排序题分析思路基本相同:先定选项,后定次序,最后通过编码将次序转化为权重。在社会调查问卷设计过程中,经常会遇到对相似状况或者原因的排序问题,而这方面问题的处理相对困难也一直是这类题型不能广泛运用的重要原因。但是,毋庸置疑,这类题型的应用无论对相似社会现象的分析,还是对原因的分析,抑或对市场调查中的满意度研究分析都非常重要。一、问题的提出假定消费者在购买电视的时候,经常会考虑很多因素,比如:价格、质量、品牌、样式、颜色、型号、功能等,假如有90%的消费者对“价格”敏感,50%的消费者要考虑质量,我们会不会得出这样的结论:消费者在购买彩电的过程中,价格因素重于质量因素呢?不一定,因为我们并不知道人们“先”考虑什么,也不知道人们在价格和质量之间考虑的权重大小,更无法将所有因素对比在同一个平面维度上,因为有几个因素,就说明人们在考虑同一个问题的时候有多少维空间。就象在对比顺位的题型中,假定消费者甲认为价格比质量重要,品牌比价格重要,我们不能直接运用形式逻辑的规则得出:品牌比质量重要一样。因为每两个因素的对比都是在一个独立的语义空间下的,跨语义空间的对比在社会生活中没有绝对的含义,只有相对的含义,这就是为什么形式逻辑的推理在社会生活中不能随便运用的原因。从理论上讲,排序题就是将不同语义空间下的概念放置于一个对比空间中进行的分析。有些学者认为对各个因素分别进行重要性的评价,就可以将人们考虑问题的顺序排列出来。我认为这种思路是错误的。比如我们设计的题型是:例1:如下购买彩电的因素,您认为它们的重要程度是:很重要比较重要一般不太重要不重要价格12345质量12345品牌12345样式12345颜色12345型号12345功能12345在这种设计的基础上得到的数据,不能直接进行顺序排列,因为这是在七个语义空间下进行的,概念之间的对比没有任何实际意义,同一个人可以将几个概念同时列为“很重要”,我们不能断定其对比意义,用平均人的概念对整体答案取均值更无法产生顺序。因为由部分(个人)可以推及总体(整体),但是产生的整体却无法再还原为部分的时候增加内容(顺序)。顺序只是在同一语境下才能产生出来。不能用整体指标的扩展来推断部分的意义顺序,即不能用没有个体顺序意义的问题结果来推断个体的行为顺序。也就是说,假定上述问题调查结果的均值分别为:价格1.2、质量1.3、品牌1.25、样式3.1、颜色2.9、型号1.57、功能1.6。我们不能得到人们在购买彩电时考虑的因素的顺序是:价格、品牌、质量、型号、功能、颜色、样式。如果这样就会得到错误的结论。二、顺序问题的设计在“关于问卷的题型设计”一文中,笔者总结了六种与顺序有关的题型,在实际应用过程中,“排序题”和“重要程度顺位排序”两种题型最重要,也对顺序问题最有效。还是应用上面的例子,排序题的设计是:例2:如下因素,在购买彩电时,您认为:(1)价格(2)质量(3)品牌(4)样式(5)颜色(6)型号(7)功能A最重要的因素是:()B第二重要的因素是:()C第三重要的因素是:()应用重要程度顺位排序方法进行的设计是:例3:如下因素,在购买彩电时,您认为:(1)价格(2)质量(3)品牌(4)样式(5)颜色(6)型号(7)功能A最重要的因素是:()B比较重要的因素是:()()(限选两项)C不太重要的因素是:()()(限选两项)D最不重要的因素是:()这两种设计在方法上都是在个体同一个语义空间下收集的资料,在对个体调查的过程中,让个体考虑了顺序的问题,因此得到的资料在整体化(统计分析)后,可以推断个体考虑的总顺序,具有“整体”还原“部分”行为顺序的性质。三、顺序问题的分析方法有关顺序问题的分析方法在原理上非常简单,就是采用加权的方法进行分析,对于排序题,权重已经基本达成共识,就是对最重要的因素取“3”作为权重,第二重要的取“2”作为权重,第三重要的取“1”作为权重。如上例,假定人们认为价格最重要的比例为25%,认为第二重要的为20%,认为第三重要的为10%,那么价格因素的重要程度及顺序指数为:(25%*3+20%*2+10%*1)/(3+2+1)这个顺序指数的取值范围在三项排序中介于0-0.5之间,五项排序介于0-0.33之间。由于人们在分析问题时不习惯于对0-0.5之间的数值进行分析,同时又由于在此类顺序问题中不可能将同一个答案同时放在多个顺序中(对于一个被访者来将,不能将价格同时放在第一、第二、第三重要三个变量或者两个变量上),所以可以用最大权重值作为分母,这就使得顺序指数介于0-1之间了。所以,笔者推荐这种加权方式。如上例,价格因素的顺序指数就可以变为:(25%*3+20%*2+10%*1)/3对于重要程度顺位排序题的处理,由于这种题型一直以来受到技术分析困难的困扰,所以没有一个对权重的共识。经过多年对此类问题处理的经验,我认为对最重要的因素取“2”,对比较重要的因素取“1”,对不太重要的因素取“-1”,对最不重要的因素取“-2”,这个权重系列简单、明确。还是如上例,假定人们认为价格最重要的比例为25%,认为比较重要的为20%,认为不太重要的为10%,最不重要的为5%,那么价格因素的重要程度及顺序指数为:25%*2+20%*1-10%*2-5%

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功