第二十六讲Ⅰ.全同粒子的交换不变性的后果(1)两全同粒子的波函数若两全同粒子,它们的相互作用是变量可分离型的,即SSm21z22z11)r,r(u)s,r,s,r(可以证明:若粒子自旋为,则在两粒子自旋交换时的对称性为。若两粒子都处于态,而总角动量为,其交换对称性为,则应满足偶(2)由于全同粒子交换不变性,而使体系可能处的状态数目不同.例:设有三个粒子处于(不同量子数单态)sSSmSs2)1(lmnlYRLLl2)1(SLSmLmuLSs2)1(LSA.玻色子3个处2个处各处同一态同一态一个态B.费米子1各处一个态3101233,2,1(3)由于全同粒子交换不变性,而使体系的几率分布不一样。(4)由于全同粒子交换不变性,在散射时,散射截面不一样。当两粒子散射时,粒子散射到①处,即偏转角的散射几率为;粒子1如散射到②处,其偏转角为,散射几率为2)(f2)(fA.玻色子(自旋为0)散射几率为(即②,①分不出。由于,,为偶)如自旋为1,非极化散射几率为2)(f)(f120SL222)(f)(f95)(f)(f93)(f)(f91°自旋,自旋自旋(5)由于全同粒子交换不变性,使体系所处的状态结构也不同元素周期表的规律正是由于电子为费米子,PauliexclusionPrinciple起作用的结果。9021012)2(f2)2(f42)2(f38例:粒子处于一维谐振子势中。单粒子波函数相应能量为对个玻色子(),基态是所有粒子都处于态,每个粒子平均能量为ssmn)r(u)21n(EnN0s0n21NEg21B.费米子(自旋)自旋为的费米子非极化的散射几率)](f)(f)(f)(f[31)(f)(f**22212122)(f)(f43)(f)(f41)](f)(f)(f)(f[21)(f)(f**22但对个无相互作用的费米子()。基态是二个处于,二个处于…,N为偶N21s0n1n为偶个处于最后为奇个处于最后NNNN22221142NEgN为奇所以,每个粒子平均能量为412NEg4NⅡ.定态微扰论这里讨论的是与无关设:,要求其本征值和本征函数其中很接近,且有解析解。而是小量,为易于表达其大小的量级)Pˆ,r(HˆHˆEHˆ10HˆHˆHˆ0HˆHˆ1HˆHˆt(1)非简并能级的微扰论设:的本征值和本征函数为,构成一正交,归一完备组。现求解即0Hˆ0kE0k0k0k0k0EHˆ0kkkkEHˆkkk10E)HˆHˆ(求,的步骤是通过逐级逼近来求精确解,即将,对展开(即对矩阵元展开)。从,出发求,。当,即,,非简并微扰论就是处理的那一条能级是非简并的(或即使有简并,但相应的简并态并不影响处理的结果)。kEkkEk1Hˆ0kE0kkEk00Hˆ10kk0kkEEA.一级微扰近似以标积以()标积0k1k)1(iki0i0k0k1)1(iki0i0Ea'EHˆa'Hˆ0k0k10k0k1*0k1kHˆrdHˆE0iki)1(ik0k0k10i)1(ik0iaEHˆaE因此,在一级近似下0i0kik10i0k0k10i)1(ikEE)Hˆ(EEHˆa0k100kkk10kkHˆHˆ)Hˆ(EE0i0kik1i0i0k)1(k0kkEE)Hˆ('(归一化准至一级)所以,在这条能级为非简并时,其能量的一级修正恰等于微扰项在无微扰状态的平均值。1N0kE1Hˆ0k例1:考虑一个粒子在位势axam21axxm21)x(V2222axam21m2Paxxm21m2PHˆ222x222x10HˆHˆ22202121xmPmHˆx准至一级修正的能量为ax)ax(m21ax0Hˆ2221nHˆnE11na2n222dxu)ax(2m21a2n222ndxu)ax(m)21n(E从这可以看到微扰论的应用限度。如准到一级,可以看出,完全是分立能级。但事实上,当时,粒子是自由的。因此,能级是连续的,可取任何值。所以,要一级修正比较精确,则必须nEnE22am21E22naωm21ε即经典和量子的差别:经典粒子不能运动到区域中去。而在量子力学中,粒子有一定几率在22am21)21n(22mEx区域中。在这区域中,有所以粒子受到的排斥力比处于纯谐振子势中的粒子小。以至于,2mE2x2222am21xm2122xm21nnE事实上,由于由定理可证得例2.求氦原子的基态能量)x(Vxm2122FHnnE)21n(设:的基态为122221222212rere2re2)(2Hˆ10HˆHˆ2121222121221)cosrr2rr(ereHˆ0Hˆ0即002100110021z)r(u)r(u0r,r,s,s00)rr(a1321ea1a4e24a2e22E020200于是以方向为Z方向,所以0Hˆ0E110122222222123221rdrddsinrerd)a(e)rr(a1r2210ll21l2210ll12l112rr)rr)(θ(cosPr1rr)rr)(θ(cosPr1r12001212202212321012121drcosd)rr)((cosPrre[erd)a(eElllrrara由于]drcosd)rr)((cosPrrelllrra221002222112lll0l1l22cosd)(cosP)(cosP1)(cosP0]drrredrrre[erdaeErrarrara1212122222222102216210222)]2ar(ae)1e(r2aeaear[erdaπe21ra2ra213ra22ra21ra216211111]er2ae)r2ar2a[(drrae8ar213ar4132121216211)8a32a64a(ae855562a8e52所以,准至一级的能量为B.二级微扰:当微扰较大时,或一级微扰为零时,则二级微扰就变得重要了。由项得022210000πε4a8e11a8e5a2e22EEE00a)rr(3021ea12以进行标积得0kiikikki)(ikiikkEE)Hˆ()Hˆ('aHˆ'E001110102)1(k10kHˆ0k2ki)1(ik0i1ki)2(ik0i0ki)1(ik0i1i)2(ik0i0Ea'Ea'Ea'Hˆa'HˆiikkikEEHˆ'E0020102以进行标积得0j)kj()1(jk1k)2(jk0k)1(ik0i1i0j)2(jk0jaEaEaHˆ'aE)2(jk0j0ka)EE(0j0k0k10j0k10k0i0k0k10i0i1i0jEEHˆHˆEEHˆHˆ'所以准至二级的能量和波函数]EE)Hˆ()Hˆ(EE)Hˆ()Hˆ('[EE1a0j0kkk1jk1i0i0kik1ji10j0k)2(jk002110ikikikkkkEE)Hˆ(')Hˆ(EE)1(k10k0k10k0kHˆHˆE)1(k0k0kHˆ]}EE)Hˆ()Hˆ(EE)Hˆ()Hˆ('[EE'0j0kkk1jk1i0i0kik1ji1j0j0k0ji0i0k0k10i0i0kkEEHˆ'{N由准至二级的归一化波函数为2i20i0k20k0ik*kN])EE(Hˆ1[rdi20i0k2ik12)EE()Hˆ(11N显然,要使近似解逼近真实解,就要恰当选取,,而且要求i0i0kik10ii0k20i0k2ik1kEE)Hˆ('])EE()Hˆ('211[]EE)Hˆ()Hˆ(EE)Hˆ()Hˆ('[EE'0j0kkk1jk1i0i0kik1ji1j0j0k0j0Hˆ1Hˆ1EE)Hˆ(0i0kik1这样取一级近似才可以满足精度要求。例:刚体转子的斯塔克效应(StarkEffect)将体系置于外电场中,能级发生移动的现象称为StarkEffect。设:转子的角动量为,电偶极为,当置于均匀外电场中(取电场方向为z)Lˆdcosd2Lˆd2LˆHˆHˆHˆ2210显然(有重简并)由于lm2lm0llm0Y2)1l(lYEYHˆ1l2cosdHˆ1iLˆz0]Hˆ,Lˆ[1z因此,运算到的本征态上,不改变其本征值由递推关系1HˆzLˆlm1lmz1lm1zYHˆmYLˆHˆYHˆLˆm1lm1lm,1llmlmYaYa),(Ycos)3l2)(1l2(m)1l(a22lm于是所以,尽管每一条能级有重简并。但是,对某一态有相互作用的是那些同能级。因此,如考虑未微扰的能级态为,则只需要考虑,。而()对和都没有任何影响。所以,可看作“没有简并”的态。从而可用非简并mm1llm1l1lllmlm*ml)aa(dYcosY2)1l(lE20l1l2lmYmlmYmlYllmlYmmlmYmlYlmY微扰论来处理。0dYcosYdElm*lm1lmml0l0l2lmml12lmEE)Hˆ('El1l,l221l,l22222)1l(l)1l(l)1l2)(1l2(ml)3l2)(1l2(m)1l('d2由这可看出,简并部分解除(同不同的能量不同,但相同)和态仍简并,即重简并条(不简并,而其他的为二重简并)。)3l2)(1l2(2m3)1l(lE2d20l22])3l2)(1l2(2m3)1l(l)Ed(1[EE220l0llmlmmlmml1l21l0m简并的解除,实际上是的对称性被破坏。如没有完全解除,那实际上对称性没有完全被破坏。(2)碱金属光谱的双线结构和反常塞曼效应A.碱金属光谱的双线结构碱金属原子有一个价电子,它受到来自原子核和其他电子提供的屏蔽库仑场作用,,价电子的哈密顿量为0Hˆ)r(Vsl)r()r(V2PˆHˆ2drdVr1c21)r(22取选力学量完全集则能量与无关。EHˆ)r(V2PˆHˆ20sl)r(Hˆ1)J,Jˆ,Lˆ,Hˆ(z220jjnljm0nlnljm0EHˆ0nlEj所以,的本征值及径向波函数是与无关。jjljmnlnljmRnl0nlnlnl22222RER)r(VRr2)1l(l)rR(drdr120HˆRj的本征态是是注意现在的0ljmnlnljmHˆRjj(对和是简并的)一级微扰jjmjj1nljnljmsl)r(nljmE)]1s(s)1l(l)1j(j[2]drr)r(R[222nl对所以,一级微扰修正与有关21ljl)]s(s)l