研卷知古今;藏书教子孙。课题:直线的点斜式、斜截式方程课型:新授课教学目标:1、知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。(3)体会直线的斜截式方程与一次函数的关系.2、过程与方法在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。3、情态与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。教学重点:直线的点斜式方程和斜截式方程。教学难点:直线的点斜式方程和斜截式方程的应用教学过程:问题设计意图师生活动1、在直线坐标系内确定一条直线,应知道哪些条件?使学生在已有知识和经验的基础上,探索新知。学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标),(yx满足的关系式。2、直线l经过点),(000yxP,且斜率为k。设点),(yxP是直线l上的任意一点,请建立yx,与00,,yxk之间的关系。yxOPP0培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标),(yx满足的关系式,从而掌握根据条件求直线方程的方法。学生根据斜率公式,可以得到,当0xx时,00xxyyk,即)(00xxkyy(1)教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。3、(1)过点),(000yxP,斜率是k的直线l上的点,其坐标都满足方程(1)吗?使学生了解方程为直线方程必须满两个条件。学生验证,教师引导。问题设计意图师生活动(2)坐标满足方程(1)的点都在经过),(000yxP,斜率为k的直线l上吗?使学生了解方程为直线方程必须满两个条件。学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式(pointslopeform).4、直线的点斜式方程能否表示坐使学生理解直线的学生分组互相讨论,然后研卷知古今;藏书教子孙。标平面上的所有直线呢?点斜式方程的适用范围。说明理由。5、(1)x轴所在直线的方程是什么?y轴所在直线的方程是什么?(2)经过点),(000yxP且平行于x轴(即垂直于y轴)的直线方程是什么?(3)经过点),(000yxP且平行于y轴(即垂直于x轴)的直线方程是什么?进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。教师学生引导通过画图分析,求得问题的解决。6、例1的教学。(教材93页)学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。7、已知直线l的斜率为k,且与y轴的交点为),0(b,求直线l的方程。引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。学生独立求出直线l的方程:bkxy(2)再此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。8、观察方程bkxy,它的形式具有什么特点?深入理解和掌握斜截式方程的特点?学生讨论,教师及时给予评价。问题设计意图师生活动9、直线bkxy在x轴上的截距是什么?使学生理解“截距”与“距离”两个概念的区别。学生思考回答,教师评价。yxOP0yxOP0研卷知古今;藏书教子孙。10、你如何从直线方程的角度认识一次函数bkxy?一次函数中k和b的几何意义是什么?你能说出一次函数3,3,12xyxyxy图象的特点吗?体会直线的斜截式方程与一次函数的关系.学生思考、讨论,教师评价、归纳概括。11、例2的教学。(教材94页)掌握从直线方程的角度判断两条直线相互平行,或相互垂直;进一步理解斜截式方程中bk,的几何意义。教师引导学生分析:用斜率判断两条直线平行、垂直结论。思考(1)21//ll时,2121,;,bbkk有何关系?(2)21ll时,2121,;,bbkk有何关系?在此由学生得出结论:,//2121kkll且21bb;12121kkll12、课堂练习第95页练习第1,2,3,4题。巩固本节课所学过的知识。学生独立完成,教师检查反馈。13、小结使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?14、布置作业:第106页第1题的(1)、(2)、(3)和第3、5题巩固深化学生课后独立完成。例3.如果直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,求直线l的斜率.(-31)归纳小结:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?作业布置:第100页第1题的(1)、(2)、(3)和第3、5题课后记:研卷知古今;藏书教子孙。课题:直线的两点式和截距式方程课型:新授课教学目标:1、知识与技能(1)掌握直线方程的两点式的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。2、过程与方法让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。教学重点:直线方程两点式。教学难点:两点式推导过程的理解教学过程:问题设计意图师生活动1、利用点斜式解答如下问题:(1)已知直线l经过两点)5,3(),2,1(21PP,求直线l的方程.(2)已知两点),(),,(222211yxPxxP其中),(2121yyxx,求通过这两点的直线方程。遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识基础上获得新结论,达到温故知新的目的。教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:(1))1(232xy(2))(112121xxxxyyyy教师指出:当21yy时,方程可以写成),(2121121121yyxxxxxxyyyy由于这个直线方程由两点确定,所以我们研卷知古今;藏书教子孙。把它叫直线的两点式方程,简称两点式(two-pointform).2、若点),(),,(222211yxPxxP中有21xx,或21yy,此时这两点的直线方程是什么?使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。教师引导学生通过画图、观察和分析,发现当21xx时,直线与x轴垂直,所以直线方程为:1xx;当21yy时,直线与y轴垂直,直线方程为:1yy。问题设计意图师生活动3、例3教学已知直线l与x轴的交点为A)0,(a,与y轴的交点为B),0(b,其中0,0ba,求直线l的方程。使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形。教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l的方程?那种方法更为简捷?然后由求出直线方程:1byax教师指出:ba,的几何意义和截距式方程的概念。4、例4教学已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程。让学生学会根据题目中所给的条件,选择恰当的直线方程解决问题。教师给出中点坐标公式,学生根据自己的理解,选择恰当方法求出边BC所在的直线方程和该边上中线所在直线方程。在此基础上,学生交流各自的作法,并进行比较。5、课堂练习第97页第1、2、3题。学生独立完成,教师检查、反馈。6、小结增强学生对直线方种四种形式(点斜式、斜截式、两点式、截距式)互相之间的联系的理解。教师提出:(1)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?(2)要求一条直线的方程,必须知道多少个条件?7、布置作业巩固深化,培养学生的独立解决问题的能力。学生课后完成归纳小结:1)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?2)要求一条直线的方程,必须知道多少个条件?作业布置:第100页第1题的(4)、(5)、(6)和第2、4题课后记:研卷知古今;藏书教子孙。课题:直线的一般式方程课型:新授课教学目标:1、知识与技能(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。2、过程与方法:学会用分类讨论的思想方法解决问题。3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。教学重点:直线方程的一般式。教学难点:对直线方程一般式的理解与应用教学过程:问题设计意图师生活动1、(1)平面直角坐标系中的每一条直线都可以用一个关于yx,的二元一次方程表示吗?(2)每一个关于yx,的二元一次方程0CByAx(A,B不同时为0)都表示一条直线吗?使学生理解直线和二元一次方程的关系。教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。为此要对B分类讨论,即当0B时和当B=0时两种情形进行变形。然后由学生去变形判断,得出结论:关于yx,的二元一次方程,它都表示一条直线。教师概括指出:由于任何一条直线都可以用一个关于yx,的二元一次方程表示;同时,任何一个关于yx,的二元一次方程都表示一条直线。我们把关于关于yx,的二元一次方程0CByAx(A,B不同时为0)叫做直线的一般式方程,简称一般式(generalform).2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?使学生理解直线方程的一般式的与其他形学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:问题设计意图师生活动式的不同点。直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x轴垂直的直线。3、在方程0CByAx中,A,使学生理解二元一次方程的系数教师引导学生回顾前面所学过的与x轴平行和重合、与y轴平研卷知古今;藏书教子孙。B,C为何值时,方程表示的直线(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;(4)与y重合。和常数项对直线的位置的影响。行和重合的直线方程的形式。然后由学生自主探索得到问题的答案。4、例5的教学已知直线经过点A(6,-4),斜率为34,求直线的点斜式和一般式方程。使学生体会把直线方程的点斜式转化为一般式,把握直线方程一般式的特点。学生独立完成。然后教师检查、评价、反馈。指出:对于直线方程的一般式,一般作如下约定:一般按含x项、含y项、常数项顺序排列;x项的系数为正;x,y的系数和常数项一般不出现分数;无特加要时,求直线方程的结果写成一般式。5、例6的教学把直线l的一般式方程062yx化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形。使学生体会直线方程的一般式化为斜截式,和已知直线方程的一般式求直线的斜率和截距的方法。先由学生思考解答,并让一个学生上黑板板书。然后教师引导学生归纳出由直线方程的一般式,求直线的斜率和截距的方法:把一般式转化为斜截式可求出直线的斜率的和直线在y轴上的截距。求直线与x轴的截距,即求直线与x轴交