《创新设计高考总复习》配套学案:排列与组合

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第2讲排列与组合[最新考纲]1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能解决简单的实际问题.知识梳理1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个不同元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫从n个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质公式(1)Amn=n(n-1)(n-2)…(n-m+1)=n!n-m!(2)Cmn=AmnAmm=nn-1n-2…n-m+1m!=n!m!n-m!(n,m∈N*,且m≤n).特别地C0n=1.性质(1)0!=1;Ann=n!.(2)Cmn=Cn-mn;Cmn+1=Cmn+Cm-1n.辨析感悟1.排列与组合的基本概念、性质(1)所有元素完全相同的两个排列为相同排列.(×)(2)两个组合相同的充要条件是其中的元素完全相同.(√)(3)若组合式Cxn=Cmn,则x=m成立.(×)2.排列与组合的应用(4)5个人站成一排,其中甲、乙两人不相邻的排法有A55-A22A44=72种.(√)(5)(教材习题改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有3×43-A34=168(个).(×)(6)(2013·北京卷改编)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是4A44=96种.(√)[感悟·提升]1.一个区别排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合,如(1)忽视了元素的顺序.2.求解排列、组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.”学生用书第174页考点一排列应用题【例1】4个男同学,3个女同学站成一排.(1)3个女同学必须排在一起,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?解(1)3个女同学是特殊元素,共有A33种排法;由于3个女同学必须排在一起,视排好的女同学为一整体,再与4个男同学排队,应有A55种排法.由分步乘法计数原理,有A33A55=720种不同排法.(2)先将男生排好,共有A44种排法,再在这4个男生的中间及两头的5个空档中插入3个女生有A35种方法.故符合条件的排法共有A44A35=1440种不同排法.(3)先排甲、乙和丙3人以外的其他4人,有A44种排法;由于甲、乙要相邻,故先把甲、乙排好,有A22种排法;最后把甲、乙排好的这个整体与丙分别插入原先排好的4人的空档及两边有A25种排法.总共有A44A22A25=960种不同排法.规律方法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.【训练1】(1)(2014·济南质检)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为().A.3×3!B.3×(3!)3C.(3!)4D.9!(2)(2013·四川卷)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga-lgb的不同值的个数是().A.9B.10C.18D.20解析(1)把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.(2)由于lga-lgb=lgab(a0,b0),∴lgab有多少个不同的值,只需看ab不同值的个数.从1,3,5,7,9中任取两个作为ab有A25种,又13与39相同,31与93相同,∴lga-lgb的不同值的个数有A25-2=18.答案(1)C(2)C考点二组合应用题【例2】某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选;(5)既要有队长,又要有女生当选.解(1)一名女生,四名男生.故共有C15·C48=350(种).(2)将两队长作为一类,其他11人作为一类,故共有C22·C311=165(种).(3)至少有一名队长含有两类:只有一名队长和两名队长.故共有:C12·C411+C22·C311=825(种)或采用排除法:C513-C511=825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.故选法为:C25·C38+C15·C48+C58=966(种).(5)分两类:第一类女队长当选:C412;第二类女队长不当选:C14·C37+C24·C27+C34·C17+C44.故选法共有:C412+C14·C37+C24·C27+C34·C17+C44=790(种).规律方法组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.【训练2】若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有().A.60种B.63种C.65种D.66种解析满足题设的取法可分为三类:一是取四个奇数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数和两个偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是取4个偶数的取法有1种.所以满足条件的取法共有5+60+1=66(种).答案D学生用书第175页考点三排列、组合的综合应用【例3】(1)(2013·浙江卷)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).(2)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为().A.A26C24B.12A26C24C.A26A24D.2A26审题路线(1)选出3个位置排特殊元素A、B、C,并把元素A、B作为元素集团进行排列;(2)可将4名同学分成两组(每组2人),再分配到两个班级.解析(1)先将A,B视为元素集团,与C先排在6个位置的三个位置上,有C36A22C12种排法;第二步,排其余的3个元素有A33种方法.∴由分步乘法计数原理,共有C36A22C12·A33=480种排法.(2)法一将4人平均分成两组有12C24种方法,将此两组分配到6个班级中的2个班有A26种.所以不同的安排方法有12C24A26种.法二先从6个班级中选2个班级有C26种不同方法,然后安排学生有C24C22种,故有C26C24=12A26C24种.答案(1)480(2)B规律方法(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.【训练3】从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为().A.24B.18C.12D.6解析根据所选偶数为0和2分类讨论求解.①当选数字0时,再从1,3,5中取出2个数字排在个位与百位.∴排成的三位数的奇数有C23A22=6个.②当取出数字2时,再从1,3,5中取2个数字有C23种方法.然后将选中的两个奇数数字选一个排在个位,其余2个数字全排列.∴排成的三位数的奇数有C23A12A22=12个.∴由分类加法计数原理,共有18个三位数的奇数.答案B1.熟练掌握:(1)排列数公式Amn=n!n-m!;(2)组合数公式Cmn=n!m!n-m!,这是正确计算的关键.2.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.3.排列组合的综合应用问题,一般按先选再排,先分组再分配的处理原则.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.、易错辨析9——实际意义理解不清导致计数错误【典例】(2012·山东卷改编)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为().A.232B.256C.472D.484[错解]第一类,含有一张红色卡片,取出红色卡片有C14种方法,再从黄、蓝、绿三色中选出两色并各取一张卡片有C23C14C14种方法.因此满足条件的取法有C14·C23C14C14=192种.第二类,不含有红色卡片,从其余三色卡片中各取一张有C14C14C14=64种取法.∴由分类加法计数原理,不同的取法共有192+64=256种.[答案]B[错因]错解的原因是没有理解“3张卡片不能是同一种颜色”的含义,误认为“取出的三种颜色不同”.[正解]第一类,含有1张红色卡片,不同的取法C14C212=264(种).第二类,不含有红色卡片,不同的取法C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法共有264+208=472(种).[答案]C[防范措施](1)准确理解题意,抓住关键字词的含义,“3张卡片不能是同一种颜色”是指“两种颜色或三种颜色”都满足要求.(2)选择恰当分类标准,避免重复遗漏,出现“至少、至多”型问题,注意间接法的运用.【自主体验】1.(2013·大纲全国卷改编)有5人排成一行参观英模事迹展览,其中甲、乙两人不相邻的不同排法共有________种(用数字作答).解析先把除甲、乙外的3人全排列,有A33种,再把甲、乙两人插入这3人形成的四个空位中的两个,共A24种不同的方法.∴所有不同的排法共有A24·A33=72(种).答案722.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析第一类:恰有三个相同的数字为1,选2,3,4中的一个数字排在十、百、千位的一个位置上,有C13·A13种方法,四位“好数”有9个.第二类:相同的三个数字为2,3,4中的一个,这样的四位“好数”为2221,3331,4441共3个.由分类加法计数原理,共有“好数”9+3=12个.答案12对应学生用书P359基础巩固题组(建议用时:40分钟)一、选择题1.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为().A.C34·C44B.C38-C34C.2C14·C24+C34D.C38-C34+1解析从8个点中任选3个点有选法C38种,因为有4点共圆所以减去C34种再加1种,即有圆C38-C34+1个.答案D2.若一个三位数的十位数字比个位数字和百位数字都大,称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中“伞数”有().A.120个B.80个C.40个D.20个解析分类讨论:若十位数为6时,有A25=20个;若十位数为5时,有A24=12个;若十位数为4时,有A23=6个;若十位数为3时,有A2

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功