生物质能发电简述

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1生物质能发电工艺简述编写:王旭2一、发展生物质能意义人类在经济持续发展过程中正面临着人口、资源和环境的巨大压力。能源的开发、利用与这三大因素密切相关。这一问题的核心是如何使能源、社会、经济、环境协调和可持续发展。目前,世界上使用的能源主要为矿物能源,其中包括煤炭、石油、天燃气。矿物能源的不断开发将最终导致能源短缺,矿物能源的大量使用也造成全球环境污染严重等问题。生物质能源的开发利用早已引起世界各国政府和科学家的关注。国外生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等发展计划。其它诸如加拿大、丹麦、荷兰、德国、法国、芬兰等国,多年来一直在进行各自的研究与开发,并形成了各具特色的生物质能源研究与开发体系,拥有各自的技术优势。我国生物质能研究开发工作,起步较晚。随着经济的发展,开始重视生物质能利用研究工作,从八十年代起,将生物质能研究开发列入国家攻关计划,并投入大量的财力和人力。已经建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业。我国现有森林、草原和耕地面积41.4亿公顷,理论上生物质资源可达65亿吨/年以上。以平均热值为15,000kJ/kg计算,折合理论资源最为32.5亿吨标准煤,相当于我国目前年总能耗的3倍以上。3生物质能是一个重要的能源,预计到下世纪,世界能源消费的40%来自生物质能,我国农村能源的70%是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。二、生物质能发电工艺生物质发电在发达国家己受到广泛重视,在奥地利、丹麦、芬兰、法国、挪威、瑞典等欧洲国家和北美,生物质能在总能源消耗中所占的比例增加相当迅速。目前国内外生物质能发电主要工艺分三类:生物质锅炉直接燃烧发电、生物质~煤混合燃烧发电和生物质气化发电。1.生物质锅炉直接燃烧发电目前国内外广泛应用的秸秆直燃技术为振动炉排直接燃烧炉,该技术在国外已经有成熟经验,并已大量投产。目前国内一些锅炉厂家也拥有这项技术,但还处于起步阶段没有投产经验。振动炉排秸秆直燃炉的工艺流程:粗处理后的燃料经给料机送入炉堂,燃料自然落入炉排前部,在此处由于高温烟气和一次风的作用逐步预热、干燥、着火、燃烧。燃料边燃烧边向炉排后部运动,直至燃尽,最后灰渣落入炉后的除渣口。直燃炉易存在的问题:由于秸秆灰中碱金属和氯的含量4相对较高,因此,烟气在高温时(450℃以上)对过热器具有较高的腐蚀性。此外,飞灰的熔点较低,易产生结渣的问题。如果灰分变成固体和半流体,运行中就很难清除,就会阻碍管道中从烟气至蒸汽的热量传输。严重时甚至会完全堵塞烟气通道,将烟气堵在锅炉中。针对这些问题各锅炉厂家在锅炉设计上,在锅炉结构、锅炉材料等方面采取了相应措施来解决这些问题,效果仍需实际运行检测。2.生物质~煤混合燃烧发电循环流化床是一种新型的环保锅炉,它主要采取了炉内物料循环、低温燃烧、可进行炉内脱硫的新技术。由于它采取了炉内物料循环,对燃料的适应性强,它可以燃用低位发热值2000~7000kcal/kg的矸石、原煤、煤泥和洗中煤等;还可以燃用热值比较低的糖渣、木霄、各种生物质秸秆及各种垃圾等。该炉虽然有燃用各种燃料的特性,但是在燃烧的过程中却有不同的效果,或多或少对锅炉都有一定的影响。掺烧糖渣、木屑、各种生物质秸秆及各种垃圾,需要重新计算风量等,并有稳定的燃料来源,相对固定的掺烧比例。循环硫化床锅炉对燃料的适应性非常强,无论燃烧哪种燃料首先要核算经济性,而后计算掺烧量、最后再进行人员培训、注意事项、运行调整等。根据《可再生能源法》、《可再生能源产业发展指导目录》、《可再生能源发电有关管理规定》和《可再生能源发电价格和费用分摊管理试行办法》,生物质发电项目主要为农林生物质直接燃烧和气化发电、生活垃圾焚烧发电和垃圾填埋气发5电及沼气发电项目。现阶段,采用流化床焚烧炉处理生活垃圾的发电项目,因采用原料热值较低,其消耗热量中常规燃料的消耗量按照热值换算可不超过总消耗量的20%。其他新建的生物质发电项目原则上不得掺烧常规燃料,否则不得按照生物质发电项目进行申报和管理。国家鼓励对常规火电项目进行掺烧生物质的技术改造,当生物质掺烧量按照热值换算低于80%时,应按照常规火电项目进行管理。3.生物质气化发电生物质气化发电技术的基本原理是把生物质转化为可燃气,再利用可燃气推动燃气发电设备进行发电。它既能解决生物质难于燃用而又分布分散的缺点,又可以充分发挥燃气发电技术设备紧凑而污染少的优点,所以是生物质能最有效最洁净的利用方法之一。气化发电过程包括三个方面,一是生物质气化,把固体生物质转化为气体燃料;二是气体净化,气化出来的燃气都带有一定的杂质,包括灰份、焦炭和焦油等,需经过净化系统把杂质除去,以保证燃气发电设备的正常运行;三是燃气发电,利用燃气轮机或燃气内燃机进行发电,有的工艺为了提高发电效率,发电过程可以增加燃气锅炉和蒸汽轮机。目前国际上采用的生物质气化发电技术有生物质整体气化联合循环(B/IGCC)和CAPS-II控气型热分解系统。传统的B/IGCC技术包括生物质气化,气体净化,燃气轮机发电及蒸汽轮机发电。由于生物质燃气热值低,炉子出口气体温度较高(800℃以上),要使IGCC具有较高的效率,必须具备两个条件,一是燃气进入燃气轮机之前不能降温,二6是燃气必须是高压的。这就要求系统必须采用生物质高压气化和燃气高温净化两种技术才能使IGCC的总体效率达到较高水平(40%),否则,如果采用一般的常压气化和燃气降温净化,由于气化效率和带压缩的燃气轮机效率都较低,气体的整体效率一般都低于35%。从纯技术的角度看,生物质IGCC技术可以大大地提高生物质气化发电的总效率。目前国际上有很多先进国家开展这方面研究,但由于焦油处理技术与燃气轮机改造技术难度很高,仍存在很多问题,如系统未成熟,造价也很高,限制了其应用推广。以意大利12MW的IGCC示范项目为例,发电效率约为31.7%,但建设成本高达25000元/kW,发电成本约1.2元/kW.h,实用性仍很差。CAPS-II控气型生物质燃料热分解系统,由热分解系统+燃气锅炉+蒸汽轮机+尾气处理设备组成。CAPS-II热分解系统的热分解气化反应室在缺氧和微负压状态下工作。热分解过程中所释放的热量可通过调整热分解气化反应室供风量对其进行控制,使其少于完全燃烧所释放的热量。在这种亚化学当量的条件下,农作物秸秆燃料被干燥、加热和高温分解,释放出水气和可挥发性组分。秸秆燃料中不可分解的可燃部分在热分解气化反应室末端中燃烧,同时为热分解气化反应室提供热量直至成为灰烬。在热分解气化反应室中所释放出的可燃气体通过一个紊流混合区后进入燃气锅炉燃烧室,点火器位于紊流混合区内,附加的助燃空气使氧化反应过程得以完全、彻底地实现。燃气锅炉与CAPS-II热分解气化反应室连接形成一个整7体,秸秆燃料经热分解系统被分解气化,气化的可燃气体在锅炉中燃烧,并通过热能转化使锅炉产生过热蒸汽,过热蒸汽再被送到汽轮发电机组通过做功产生电力。如果热分解气化反应室中出现过载状态时,污染控制作用将被降低并造成两个不良后果。首先,气体流速将增大到一定范围,使长链的化合物无法完全氧化分解并送入燃气锅炉。大量的烟尘流入燃气锅炉将超过其燃烧容积,使未反应的烟尘由烟囱排入大气。其次由于农作物秸秆在热分解气化反应室的停留时间可能会被缩短,使排放的灰渣含碳量增加,无法达到环保要求。所以当用户有过载燃烧时将会加重尾气处理系统的负荷,同时也不能保证排放灰渣中的含碳量。热分解炉设计过载量为15%CAPS-II热分解系统采用现代最先进的控制技术-基于计算机技术和网络技术,控制系统采用开放性系统,热分解炉、余热锅炉、汽轮机、发电机及电气控制系统互联,在网络控制及信息共享方面形成统一的系统;具有回路控制能力很强,而且有很强的逻辑判断能力,以适应协调控制过程中不同工况的转换;机、泵、阀的电气控制一并纳入控制系统,达到IEC一体化;全厂主要设备启动、操作运行和停机均可以在中央控制室完成。通过对燃烧的控制,尤其对温度、空气量的控制非常严格高效,避免了过载燃烧的发生。热分解气化技术对燃料的低温燃烧控制、设备运动部件的缓慢移动都使得高温燃烧具有避免飞灰在设备上结焦、降低对设备的腐蚀影响、提高设备热效率、增加设备运行使用寿命的优势。热分解气化技术对燃料的适应性强,它可以处理所有生物质燃料,包括垃圾。对燃料的成份适应性好,如热分解气8化技术可以处理水份7%~35%的生物质燃料,燃料系统设备的运行可靠性强。三、总结生物质能源在未来世纪将成为可持续能源重要部分。我国幅员辽阔,但化石能源资源有限,生物质资源丰富,发展生物质能源具有重要的战略意义和现实意义。采用高新技术将秸秆、禽畜粪便和有机废水等生物质转化为高品位能源,开发生物质能源将涉及农村发展、能源开发、环境保护、资源保护、国家安全和生态平衡等诸多利益。生物质能虽然不是主要的商品能源,但它在我国生产的一次能源中占15%左右,居第二位,特别是在农村仍是主要的能源之一,所以在我国的能源体系中有重要的地位。随着社会的发展,农村生物质能消耗的比例会有所下降,但由于它具有分散性和独立性,可以确保能源系统的安全性和灵活性,在未来的能源体系中将显得越来越重要。根据我国新能源和可再生能源发展纲要提出的目标,至2010年,我国生物质能发电装机容量要超过300万千瓦。因此,从中央到地方政府都制定了一系列补贴政策,支持生物质能技术的发展,加快了技术商业化的进程。随着我国国民经济的高速发展和城乡人民生活水平的不断提高,既有经济、社会效益,又能保护环境的秸秆发电技术的利用前景将会越来越广阔。各国对生物质的重视程度差别很大,这主要决定于各国的能源结构和生物质资源的情况,而生物质的发展前景很大程度上取决于各国的重视程度和政策上。未来的10年将是世9界各国大力发展生物质能的关键时期,在国际上,主要目标是把生物质转换为电力和运输燃料,以期在一定范围内减少或代替矿物燃料的使用。生物质能转化为电力主要有直接燃烧后用蒸汽进行发电和生物质气化发电两种。生物质直接燃烧发电的技术已基本成熟,它已进入推广应用阶段,处理的生物质大部分是农业废弃物或木材厂、纸厂的森林废弃物。这种技术单位投资较高,大规模下效率也较高。生物质气化发电的技术也已经非常成熟,以CAPS-II热分解气化技术为代表的生物质气化发电的技术已经在生物质垃圾处理上得到广泛应用,在农业废弃物如玉米秸秆、麦秆、下剪果树枝等处理上也开始了实施推广。在生物质高度集中的地方采用大规模直接燃烧利用的效益比较好,而在生物质分散的农村地区,采用气化利用可以取得较好的效果。随着生物质能技术的不断完善,在我国农村推广生物质能秸秆发电技术市场广阔,前景光明。

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功