暨南大学本科生课程论文论文题目:人力资源分配优化模型学院:国际商学院管理学院学系:会计系专业:工商管理会计学课程名称:数学建模方法及其应用学生姓名:欧锦成张家仪学号:201205019132012055542指导教师:张元标2013年5月31日[课程论文题目]2人力资源安排数学模型[摘要]这是,关于人力资源合理分配的问题。本文针对PE公司的内部机构状况,解决人力资源合理分配。建立优化模型,实现“公司每天达到最大收益”的目标,通过经济预测,完成管理工作。根据不同领域,进行合理分配,使公司充分发挥人力资源的各项职能作用,提高项目管理,保证工程质量,规划全面发展的策略。根据公司的结构及相应工资的水平分布情况,不同项目和各种人员的收费标准和各项目对专业技术人员结构要求的相关资料分析。采取正确的方法,分配人力资源。把相应技能组分配到正确的经数据量度的所属任务上。通过数据上的考量,根据项目与各类人员间的相互作用,进行合理的资源管理和配置,以确保机构系统运作正常,保证工作系统运作具备可行性。首先建立模型,再利用强大的Lingo软件对模型的分析,进行求解得到的最优化结果为:每天直接总收益是27150元。继而用Lingo再对该模型进行灵敏度分析,得出一定的适用范围,提高了解的稳定性和适应性。保证人力资源分配优化模型,在约束条件下,达到理想的工作效益及经济收益。另外,透过使用统计图表“最优技术人员分配图”,对A,B,C,D这4个项目,清晰地陈列出所需工作人员最优数目。并列出“按项目需求与工作难易程度不同的关系分析图”的比较分析,并针对企业客户的意向分析,对模型方案进行预测、验证和解释,提高其运作网络的可行性、适用性、有效性、合理性和准确性。最后利用这种建模方法,深入研究该公司的人员分配问题,为公司人员分配的合理化提出可行性的建议。通过采取数字化形式,以评估及测量各种方案。实现目标的最优结果,使资源配置在工作活动进行时,不存在冲突。建立人力资源合理分配的数学模型,以科学分析的方法,为PE公司推出最优的决策方案。[关键词]资源配置;Lingo;灵敏度分析[课程论文题目]31问题重述PE公司作为一家从事电力工程技术的中美合资公司,拥有41个专业人员,当中拥有的人力资源包括:高级工程师,工程师,助理工程师,技术员。针对该公司的结构及相应工资的水平分布情况,不同项目和各种人员的收费标准和各项目对专业技术人员结构要求。对相关资料进行分析,建立人力资源合理分配的数学模型。以使该公司人力资源分配达到最优。该公司承接4个工程项目,其中A地和B地是现场施工监理,主要工作在现场完成;而C地和D地是工程设计,主要工作在办公室完成。旗下的所有工程项目分别来源于不同客户,并且工作的难易程度不一。各项目的合同对有关技术人员,具有不同的收费标准的要求。为提高项目管理,保证工程质量,充分发挥人力资源的职能作用,并必须保证所分配的专业人员结构,符合客户的需求。进行合理的分配,使用现有的技术力量,使公司每天经济收益获利最大。2问题分析本问题是解决企业公司中的人力资源配置。通过数学优化模型,使该公司的资源配置更为合理、有效。企业能够充分发挥人力资源配置的作用,完成资源管理的核心任务。根据相关资料分析可知,该电力工程技术合资公司的内部机构状况与所承接A,B,C,D工程项目,存在着局限性。在建立模型的过程中,存在着相应的约束条件,因此需按照员工数量,及相应的资料,按其技能配予特定任务工作。同时,工作人员分配具有弹性。要实现人力资源达到最优化,节省人力资源,减少企业经济成本,有利于实现企业利润最大化。一个良好的组织,必须拥有一个有效的资源分配,才可以尽量避免不必要的损失。因此,为完成项目中的任务,进行最优分配。利用有限劳动资源,获得公司最大利润。针对本问题进行分析,面对不同的客户,不同的收费标准,工作的难易程度不一。要使人力资源的配置达到优化,目标得以实现,当中涉及连个层面,人力资源管理和社会经济。[课程论文题目]4针对个别项目的要求,做出相应的分析安排策略。如项目D的技术要求较高,人员配备必须是助理工程师以上,技术员不能参加。针对专业技术人员的性质和人数限制,进行合理的分工安排。由于,高级工程师的人数相对稀缺,而又具备质量保证的关键工作职能。在公司中起到十分重要的作用。因此,其对各项目标客户的配备不能少于一定数目的限制。同时,各项目对其他专业人员,总人数也存在不同的要求和限制。针对所有项目同时需要总人数最多为:10+16+11+18=55。超出公司实际拥有的41个专业人员数目的问题,做出适当的分析评估。其次,项目C、D均在办公室完成。因此,员工每天需要缴付50元的管理费。再者,公司对于不同项目和各种人员,采取按人工计算的收费标准策略。通过数学优化模型,解决合理的分配现有的技术力量,实现目标为公司每天的直接收益最大。提高人力资源分配的合理性。由此,建立以下数学优化分配模型。3模型假设及说明(1)假设各技术人员,在所属类别内部,不存在技术差异。按各类员工的工作能力与项目职业所需具备的能力。通过定量分析,做出适当的安排,需要考虑各自拥有技能,从而确定组分的含量。(2)不考虑所处地域的自然条件因素,所造成的影响。把企业公司看作为处于一个普通环境条件下运作的体系,对项目进行工作实施的评估分析。(3)假设人员对应所属工作具稳定性。在工作运行体系下,其工作时间、内容和程序,不对工作人员的要求发生的任何影响变化。排除个体经验实践因素,即企业内部员的工绩效,不纳入评估。(4)不考虑政府对市场或企业公司的政策干涉。如:社会保障。(5)不考虑内外界对企业的影响,经济环境变化不做考量因素。不考虑外界的经济状况(如:金融危机);不考虑企业公司自身的经济约束条件(如:企业自身说拥有的科技设备资源,借贷)。(6)假设企业不存在项目竞争者。使项目客户不因竞争者的存在,而选择把对该企业公司的投资看作为一个机会成本的选择,或作出对该企业提高运作系统成本的决策。(7)不考虑企业公司内部的机构运行政策。不考虑公司对员工的额外薪金,医疗保费等优惠政策,不考虑公司对员工要求额外支付的费用,考虑因素不包含购买医疗保险等。[课程论文题目]5(8)若只考虑技术人员的工资,及对应4个方案项目的收费。其工资对休息假日和每天工作时间长短不作考虑,仅按日薪。公司收费以日缴费计算。(9)该公司的内部机构的运作,具有成本约束。如:在办公室内,每人每天需要缴纳50元的管理费:需要协调工作流活动和资源技能适合度。对人力资源数量资源,进行数量优化运算。4符号使用及说明S——表示公司总的利润Xij——表示工程项目所投入的技术人员数目;其中i为1-4,表示技术人员的等级,j为A-D,表示技术人员投入的工程。A——表示A项工程组的技术人员每日总收费;B——表示B项工程组的技术人员每日总收费;C——表示C项工程组的技术人员每日总收费;D——表示D项工程组的技术人员每日总收费;M——表示每日工资总数;N——表示办公室管理费用;5模型准备对系统数据库,通过观察考量,进行预测分析。通过图表列举形式,把限制性条件,化为图形分析,使其更明确、清晰。5.1根据各项目对专业技术人员结构的要求,得到每天相应固定收费。(1)按照该公司需满足客户的需求条件,根据问题中的表3,表4,表5,针对本问题进行分析。表3公司的结构及工资情况高级工程师工程师助理工程师技术员人数日工资(元)925017200101705110表4不同项目和各种人员的收费标准[课程论文题目]6高级工程师工程师助理工程师技术员收费(元/天)ABCD1000150013001000800800900800600700700700500600400500表5:各项目对专业技术人员结构的要求ABCD高级工程师工程师助理工程师技术员总计1~3≥2≥2≥1≤102~5≥2≥2≥3≤162≥2≥2≥1≤111~22~8≥1--≤18(2)分析:从表5可知:1,在项目A中,必须具备1名高级工程师;2名工程师,2名助理工程师,1名技术员;2,在项目B中,必须具备2名高级工程师;2名工程师,2名助理工程师,3名技术员;3,在项目C中,必须具备2名高级工程师;2名高级工程师,2名工程师,2名助理工程师,1名技术员;4,在项目D中,必须具备1名高级工程师;1名助理工程师,技术员不能参加。以上人数均受限制,其余则具弹性。因此,可以根据上表数据,面对不同的客户,不同的收费标准,工作的难易程度不一。可得每天相应固定收费如下图所示。[课程论文题目]7(3)结论:1、所需固定总人数为:26人。其中A地和B地在现场完成的工序,人数为15人;另外2项是而C地和D地在办公室完成的工程设计,人数为11人。2、4个项目的每日总固定收费为:4300+7800+6200+3300=21600元3、4个项目的每日总固定工资为:1100+1570+1350+820=4840元4、其次,C、D项目均在办公室完成,每人每天需缴50元的管理费。由此可得,总固定管理费为:11x50=550元5、总固定收益为21600-4840-550=16210元,6、因此,该公司所有项目总收益必须=16210元5.2根据工作性质需求,对所有工程项目进行以下评估:(1)评估标准为:通过表中各个项目人数要求的取值范围,对相应的工作难易程度,进行估计。其中,带有“~”符号的人数范围,应取各项科技人员数量的平均值,从而评估项目的难易程度的可能性(如:项目A的高级工程师取值为1~3,可取范围平均值为:2.5)。带有“≥”符号的人数范围,由于该数值范围,仅仅给出最小值,并趨向于无穷大。所以不能取平均值,而取其最小值。采用取最少值的方法,进行分析评估。如:项目A的工程师取值为=2,可取范围的最小值:2)。对工作难易程度估计,在4个项目中的专业技术人员的总计数据上,因为项目总人数取值范围给出的是最大值。若采用各个项目的总人数,进行个个技术人员最大值的推演,提高了其误差性。因而从条件可知,各项目技术人员总数目的最大取值为:[课程论文题目]810+16+11+18=55。虽相较于公司实际人数41多,但我们同样可以通过已给数据,作为工作难易程度与项目人数之间的一个关系参考。因此,为缩少误差性,减少差异,我们可用人员数目总计数据,取其最大值,并进行评估。(2)通过以上的评估方法分析,可以获得下表:项目A项目B项目C项目D高级工程师23.521.5工程师2225助理工程师2221技术员1310总计10161118(3)并可以获得下表:表中,显示了工作的难易程度的性质。由上表可推断出:工作难易程度与技术人员性质相关,及其4个方案的项目性质。从两两线间的上下相对间距,根据技术职能自身所具备的性质,可大概分析不同项目需求与工作难易程度。(3)结论:1,职业性质显示了所属工作难易程度。工作越困难,需要高技术的人员较多;工作越[课程论文题目]9容易,需要高技术的人员较少,相反地,或许愿意更多地把成本放在较低技术的人员上。2,在4个项目(A~D)中,“高级工程师,工程师,助理工程师,技术员”这4类技术人员以由高到低的顺序排列拥有的技能知识遞减。其中,“工程师”,“助理工程师”在项目A,B,C中,具有相同需求,客户间没有需求差异;而在项目D中“工程师”的需求取值范围为2~8之间,相较于“助理工程师”为高。3,在项目A,C中,客户需要的各项技术人员数目要求相同,因此难易程度类同。4,对于项目B,工程需要“高级工程师”和“技术员”的人数相较于项目A,C,D为高。说明这个项目工程,即需要较多的高级技术人员,也需要较多的低级技术人员。这个项目的难易程度较广,适中。5,项目D在以上图表评估中,对“高级工程师”的需求,与其他项目相较或许需要更多的人员。6,在C,D项目中,对“技术员”的人数需求不多。从以上图表的结果进行分析,“技术人员”的曲线,在C,D项目中与其他3类专业技术人员的曲线比较中,处于最低,人数需求最低。7,在4类技术人员,项目D需求高技术的人员最高,而需求低技术的人员较少。8,在4个项目中,项目D