JournalofBuildingStructures38520175Vol.38No.5May20170191000-6869201705-0149-09DOI10.14006/j.jzjgxb.2017.05.0191211.2000922.230009。。。。。。。TU375TU311.41AAnalyticalmethodforfatigueprocessofconcretestructuresLIANGJunsong1DINGZhaodong2LIJie11.CollegeofCivilEngineeringTongjiUniversityShanghai200092China2.SchoolofCivilEngineeringHefeiUniversityofTechnologyHefei230009ChinaAbstractInordertoperformacomprehensivestudyonthefatigueprocessofconcretestructuresanovelanalysismethodwasproposed.Inthismethodfatiguedegradationofconcretematerialwascharacterizedbyanintroducedfatiguedamageconstitutivemodel.Toenhancetheefficiencyoffatigueanalysisaspeedingcalculationmethodnamelythecyclejumpmethodwasdevelopedbycombiningtheconstitutivemodelwiththenonlinearfiniteelementmethodbasedonwhichonlyfewloadingcyclesneedtobecalculatedtogainthewholefatigueprocessofconcretestructures.Inadditionaself-adaptiveaccuracycontrollingmethodwasdevelopedinwhichthejumpingtimecanbeautomaticallyadjustedbasedondamageevolutionrate.Throughtheanalyticalmethodproposedinthispaperthenonlinearbehaviourespeciallythecrackingprocessofconcretestructuresunderfatigueloadingcanbewellpredicted.Asetofsimulationsandexperimentalcomparisonsarepresentedwhichillustratestheeffectivenessofthemodelandhighefficiencyofthenumericalalgorithmintheanalysisofthefatigueprocessofconcretestructure.Keywordsconcretestructurefatigueprocessdamageconstitutivemodelaccelerationalgorithmaccuracycontrolnonlinearfiniteelementanalysis5126112037451538010。1987—。E-mailliangjunsong930@163.com1957—。E-maillijie@tongji.edu.cn2015119410。S-Nε-N1-5。。、。6-910-12。。13-16。、。。100017。、。。。、。18-19。。20-21。。。22-25。。。。11.124σ=I-D∶珔σ1σCauchyID珔σ珔σ=E0∶εe=E0∶ε-εp2εe=C0∶珔σ3E0C0C0=E-10εεeεp。25d+d-DD=d+P++d-P-4P+P-P+=∑3i=1H珚σinininini5P-=I-P+6珚σi珔σini珚σiHxHeavisideHx=0x≤01x>0{7。25。05141σ=1-d+珔σ++1-d-珔σ-8珔σ+珔σ-26-27珔σ=珔σ++珔σ-9珔σ+=P+∶珔σ10珔σ-=珔σ-珔σ+=P-∶珔σ118。。1.228εp=bpεe12εp=εp++εp-εp±=b±pεe±=b±pC0∶珔σ·{±13“±”“+”“-”b±p28b±p=Hd·±ξ±p·d·±n±p14ξ±pn±pξ±p2~3n±p8~12。1413εp=Hd·+ξ+p·d·+n+pC0∶珔σ·++Hd·-ξ-p·d·-n-pC0∶珔σ·-=Hd·+ξ+p·d·+n+pC0∶Q+∶珔σ·+Hd·-ξ-p·d·-n-pC0∶Q-∶珔σ·15Q+Q-23Q+=P++2∑3i=1∑3j>i〈珚σi〉-〈珚σj〉珚σi-珚σjpijpijQ-=I-Q{+16〈·〉McCauley〈x〉=x+x/2pij29pij=pji=12ninj+njni17215Eep28Eep=I+Hd·+ξ+p·d·+n+pQ++Hd·-ξ-p·d·-n-pQ--1∶E018σp=σp++σp-σp±=E0∶εp±σp±=E0∶εp±=Hd·±ξ±p·d·±n±p珔σ·{±192珔σ·=E0∶ε-εp=E0∶ε-σp=E0∶ε-σp++σp-201.330-31。32“”110%80%10%16。1Fig.1Degenerationofconcretestiffnesswithfatigueloadingcycles“”17d·±=Y·±·H±fd±Y±Y·±>00Y·±≤0{21Y±23Y+=E0珔σ+∶C0∶珔槡σ22Y-=αI1+3J槡223E0I1珔σJ2珔sα0.1212H±fd±Y±17H±fd±Y±=1κ·Y±·Y±W()±n·h±d±24κ、n5~10W±1510.6~1.0fcfth±d±h±d±=e-θ1d±+e-θ21-d±25θ1、θ2θ1n8~10θ2κ3~617。2。、。。2.12。dtttt+ΔtTaylordt+Δt=dt+d·tΔt+d¨tΔt22+OΔt2262Fig.2Basicprincipleoffatigueaccelerationalgorithm33。。ΔtjumpΔdth2d·tΔtjump=Δdthd·t27dt+Δtjump=dt+d·tΔtjump28Δdth0.01~0.1。Δdth00。3dint、dendtint、tend。3Fig.3PrincipleofextrapolationⅠⅢΔdth。33Δtjump=λd·td¨t29λ0.1。dt+Δtjump=dt+d·tΔtjump+d¨tΔtjump2230d¨t3。2.2。。tt+Δt。4。d·thd·t+Δt-d·t≤d·thd·t+Δt-d·t>d·thd·t+λ-d·t=d·th2514Fig.4Accuracycontrolstrategyofextrapolation。12729Δtjump2Δtjump/2d·t+Δtjump/23d·t+Δtjump/2-d·t<d·tht+Δtjump/2d·t+Δt-d·t+λ≤d·tht+Δtjump/24d·t+Δtjump/2-d·t>d·thΔtjump=Δtjump/22。2.3C30a、b、h100、100、300mm0.8~0.2fc5。813~2021~2517。Δdth=0.08d·th=0.1d·t。。5Fig.5Uniaxialcompressivefatigueloadingofconcretespecimend-N6。ABAQUS。。6Fig.6Resultofaccuracycontrolmethod16min2min。3UMATVUMATPythonABAQUS7UMATVUMAT17、25。。。7Fig.7Flowchartforfatigueprocessanalysisonconcretestructure3.150.2~0.8ft8。83518Fig.8Trailcalculationresultsofuniaxialtensilefatigueofmodel“”32。34。ft=2.46MPaE0=3.61×104MPa。0.2~0.7ft。1。9。1Table1ParametersforuniaxialtensilefatigueanalysisW+/MPanκθ1θ2ξ+pn+p2.45840242.010.29Fig.9Comparisonofsimulatedresultsofuniaxialtensilefatigue3.235。ft=3.5MPafc=44.8MPaE0=3.28×104MPa。10。F≈5.423kNF=0kN。10Fig.10DimensionsandloadingconditionofconcretebeamABAQUS11CPS32。12。1。13N/NfNNf。。18h2h。11Fig.11Meshingstrategyoffiniteelementmodel2Table2ParametersforfatigueanalysisonconcretebeamW+/MPanκθ1θ2ξ+pn+p3.2483225.62.59.8445112Fig.12Simulatedfatiguedamageprocessofconcretebeam13Fig.13Comparisonofanalysisandtestresultsofbendingfatigueofconcretebeam。300mm400mm40mmρs≈2%。0.7~0.1FuFu。14。15。CPS3embed。fy=335MPa。ft=3.0MPafc=36MPaE0=3.2×104MPa。3。Nf=55631。16。14Fig.14DimensionsandloadingconditionofRCbeam15Fig.15Meshingstrategyoffiniteelementmodel3Table3ParametersforRCbeamfatigueanalysisW+W-nκθ1θ22.5MPa26MPa4.083224ξ+pξ-pn+pn-p2.03.010.68.816Fig.16AnalysisresultsoffatiguedamageprocessofRCbeam55151。。。。2ABAQUS。、、。1CONSIDEREM.InfuencedesarmaturesmetalliguessurlesproprietiesdesmortiersetbetonsJ.IompteRendueL.Academie18981271992-995.2JOLYD.Laresistanceetl’elasticdescimentsporlandJ.AnnalesDesPontsetChaussesMemoires1898167198-224.3LUSZHENGJGAOH.FatiguepropertiesofasphaltmixturesatbroadstressratioconditionswithimprovedS-NmodelJ.JournalofHighwayandTransportationResearchandDevelopment20137117-22.4XIAOJLIHYANGZ.FatiguebehaviorofrecycledaggregateconcreteundercompressionandbendingcyclicloadingsJ.ConstructionandBuildingMaterials2013381681-688.5PARVEZAFO