霍尔传感器测速系-硬件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

I自行车测速系统设计摘要随着居民生活水平的不断提高,自行车不再仅仅是普通的运输、代步的工具,而是成为人们娱乐、休闲、锻炼的首选。自行车的速度里程表能够满足人们最基本的需求,让人们能清楚地知道当前的速度、里程等物理量。本论文主要阐述一种基于霍尔元件的自行车的速度里程表的设计。以STC89C52单片机为核心,A44E霍尔传感器测转数,实现对自行车里程/速度的测量统计,单片机片内EEPROM实现在系统掉电的时候保存里程信息,并能将自行车的里程数及速度用1CD1602实时显示。文章详细介绍了自行车的速度里程表的硬件电路和软件设计。硬件部分利用霍尔元件将自行车每转一圈的脉冲数传入单片机系统,然后单片机系统将信号经过处理送显示。软件部分用C语言进行编程,采用模块化设计思想。该系统硬件电路稳定性高,操作方便,完全符合设计要求。关键词:里程/速度;霍尔元件;单片机;LCD1602II引言自行车被发明及使用到现在已有两百多年的历史,这两百年间人类在不断的尝试与研发过程中,将玩具式的木马车转换到今日各式新颖休闲运动自行车,自行车发展的目的也从最早的交通代步的工具转换成休闲娱乐运动的用途。随着居民生活水平的不断提高,自行车不再仅仅是普通的运输、代步的工具,而是成为人们娱乐、休闲、锻炼的首选。因此,人们希望自行车的功用更强大,能给人们带来更多的方便。自行车里程速度表作为自行车的一大辅助工具也正是随着这个要求而迅速发展的,其功能也逐渐从单一的里程显示发展到速度、时间显示,甚至有的还具有测量骑车人的心跳、显示骑车人热量消耗等功能。本设计采用了STC89C52单片机设计一种体积小、操作简单的便携式自行车的速度里程表,它能自动地显示当前自行车行走的距离及运行的速度。11绪论1.1设计内容本课题主要任务是利用霍尔元件、单片机等部件设计一个可用LCD1602实时显示里程和速度的自行车的速度里程表。本文主要介绍了自行车的速度里程表的设计思想、电路原理、方案论证以及元件的选择等内容,整体上分为硬件部分设计和软件部分设计。本文首先扼要对该课题的任务进行方案论证,包括硬件方案和软件方案的设计;继而具体介绍了自行车的速度里程表的硬件设计,包括传感器的选择、单片机的选择、显示电路的设计;然后阐述了该自行车的速度里程表的软件设计,包括数据处理子程序的设计、显示子程序的设计;最后针对仿真过程遇到的问题进行了具体说明与分析,对本次设计进行了系统的总结。具体的硬件电路包括STC89C52单片机的外围电路以及LCD显示电路等。软件设计包括:芯片的初始化程序、定时中断采样子程序、显示子程序等,软件采用C语言编写,软件设计的思想主要是自顶向下,模块化设计,各个子模块逐一设计。1.2任务分析与实现本设计的任务是:以通用STC89C52单片机为处理核心,用传感器将车轮的转数转换为电脉冲,进行处理后送入单片机。里程及速度的测量,是经过单片机的定时/计数器测出总的脉冲数和每转一圈的时间,再经过单片机的计算得出,其结果通过LCD显示器显示出来。本系统总体思路如下:假定轮圈的周长为L,在轮圈上安装m个永久磁铁,则测得的里程值最大误差为L/m。经综合分析,本设计中取m=1。当轮子每转一圈,通过开关型霍尔元件传感器采集到一个脉冲信号,并从引脚P3.2中断0端输入,传感器每获取一个脉冲信号即对系统提供一次计数中断。每次中断代表车轮转动一圈,中断数n轮圈的周长为L的乘积为里程值。计数器T1计算每转一圈所用的时间t,就可以计算出即时速度v。经过单片机的处理将当前速度与里程显示出来。要求达到的各项指标及实现方法如下:21.利用霍尔传感器产生里程数的脉冲信号。2.对脉冲信号进行计数。实现:利用单片机自带的计数器对霍尔传感器脉冲信号进行计数。3.对数据进行处理,要求用LCD显示里程总数和即时速度。实现:利用软件编程,对数据进行处理得到需要的数值。最终实现目标:自行车的速度里程表具有里程、速度测试与显示功能,采用单片机作控制,显示电路可显示里程及速度。1.2方案分析论证1.2.1霍尔测速模块论证与选择方案一:采用型号为A3144的霍尔片作为霍尔测速模块的核心,该霍尔片体积小,安装灵活,价格合理,可用于测速,可与普通的磁钢片配合工作。方案二:采用型号为CHV-20L的霍尔元器件作为霍尔测速模块的核心,该霍尔器件额定电流为100mA,输出电压为5V,电源为12~15V。体积较大,价格昂贵。因此选择方案一。1.2.2单片机模块论证与选择方案一:采用型号为STC89C52的单片机作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。STC89C52是带8K字节闪烁可编程擦除只读存储器的低电压、高性能CMOS8位微处理器,且内部集成EEPROM它将多功能8位CPU和闪烁存储器组合在单个芯片中,为许多控制提供了灵活性高且价格低廉的方案。方案二:采用单片机C8051F060作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。C8051F060系列单片机是美国CYGNAL公司推出的一种与51系列单片机内核兼容的单片机[4]。C8051F060作为新一代8051单片机,具有功能强大、体积小、工作稳定等特点,适用于复杂控制系统。因此选择方案一。1.2.3显示模块论证与选择方案一:采用LED数码管动态扫描,LED数码管价格适中,亮度高,显示数字合适,但是连接复杂,耗电流大,驱动电路复杂。3方案二:采用点阵式数码管显示,点阵式数码管是由八行八列的发光二极管组成,对于显示简单文字比较适合,如果显示数字则浪费资源,而且价格也相对较高。方案三:采用LCD液晶显示屏,液晶显示屏的显示功能强大,可显示大量文字,图形,显示多样,清晰可见,并且连接很方便,所以在此设计中采用了LCD液晶显示屏。因此选择方案三。1.2.4电源模块论证与选择方案一:采用交流220V/50Hz电源转换为直流5V电源作为电源模块。该方案实施简单,电路搭建方便,可作为单片机开发常备电源使用。方案二:采用干电池串并联达到5V作为电源模块。该方案实施简单,无需搭建电路,但相对该方案不够稳定,电池耗电快,带负载后压降过高,可能无法使系统稳定持续运行。方案三:采用可充电锂电池结合稳压模块作为电源模块。该方案简单易行,而且相对稳定、误差小,但该方案相对价格过高,针对该设计要求性价比低。因此选择方案二。2基于霍尔传感器的电机转速测量系统硬件设计2.1电机转速测量系统的硬件电路设计2.1.1总体硬件设计使用单片机测量电机转速的基本结构如图2-1所示。该系统包括霍尔传感器、隔离整形电路、主CPU、显示电路、报警电路及电源等部分。图2-1系统总体结构图4其测量过程是测量转速的霍尔传感器和电机机轴同轴连接,机轴每转一周,产生一定量的脉冲个数,由霍尔器件电路输出。经过电耦合器后,即经过隔离整形电路后,成为转数计数器的计数脉冲。同时霍尔传感器电路输出幅度为12V的脉冲经光电耦合后降为5V,保持同单片机STC89C52逻辑电平相一致,控制计数时间,即可实现计数器的计数值对应机轴的转速值。主CPU将该值数据处理后,在LCD液晶显示器上显示出来。一旦超速,CPU通过喇叭和转灯发出声、光报警信号。1.传感器部分主要分为两个部分。第一部分是利用霍尔器件将电机的转速转化为脉冲信号。霍尔测速模块由铁质的测速齿轮和带有霍尔元件的支架构成。测速齿轮如图2-2所示,齿轮厚度大约2mm,将其固定在待测电机的转轴上。将霍尔元件固定在距齿轮外圆1mm的探头上,霍尔元件的对面粘贴小磁钢,当测速齿轮的每个齿经过探头正前方时,改变了磁通密度,霍尔元件就输出一个脉冲信号。第二部分是使用六反相器和光耦,将传感器输出的信号进行整形隔离,减少计数的干扰。测速齿轮霍尔元件图2-2转速变换装置2.处理器采用STC89C52单片机作为系统的处理器。3.显示部分该部分有两个功能,在正常情况下,通过LCD液晶显示器显示当前的转速。2.1.2系统电路设计实际测量时,要把霍尔传感器固定在直流测速电机的底板上,与霍尔探头相对的电机的轴上固定着一片磁钢块,电机每转一周,霍尔传感器便发出一个脉冲信号,将此脉冲信5号接到开发的多功能实验板上的P3.2[0INT]上,设定T0定时,每分钟所计的进入P3.2的脉冲个数即为直流电机的转速。由于在虚拟仿真电路图中,没有电机及传感器,所以就直接用一个脉冲信号代替,电路图如图2-3所示。图2-3总体硬件电路图2.2霍尔传感器测量电路设计2.2.1霍尔元件根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。6霍尔传感器A3144是AllegroMicroSystems公司生产的宽温、开关型霍尔效应传感器,其工作温度范围可达-40℃~150℃。它由电压调整电路、反相电源保护电路、霍尔元件、温度补偿电路、微信号放大器、施密特触发器和OC门输出极构成,通过使用上拉电阻可以将其输出接入CMOS逻辑电路。该芯片具有尺寸小、稳定性好、灵敏度高等特点,有两种封装形式,一种是3脚贴片微小型封装,后缀为“LH”;另一种是3脚直插式封装,后缀为“UA”[5]。A3144E系列单极高温霍尔效应集成传感器是由稳压电源,霍尔电压发生器,差分放大器,施密特触发器和输出放大器组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。它是一种单磁极工作的磁敏电路,适用于矩形或者柱形磁体下工作。可应用于汽车工业和军事工程中。霍尔传感器的外形图和与磁场的作用关系如图2-4所示。磁场由磁钢提供,所以霍尔传感器和磁钢需要配对使用。霍尔元件和磁钢管脚图图2-4霍尔传感器的外形图该霍尔传感器的接线图如图2-5所示。图2-5霍尔传感器的接线图2.2.2霍尔传感器测量原理测量电机转速的第一步就是要将电机的转速表示为单片机可以识别的脉冲信号,从而进行脉冲计数。霍尔器件作为一种转速测量系统的传感器,它有结构牢固、体积小、重量轻、寿命长、安装方便等优点,因此选用霍尔传感器检测脉冲信号,其基本的测量原理如7图2-6所示,当电机转动时,带动传感器运动,产生对应频率的脉冲信号,经过信号处理后输出到计数器或其他的脉冲计数装置,进行转速的测量[6]。图2-6霍尔器件测速原理2.2.3转速测量方法转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随侧轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。脉冲信号的周期与电机的转速有以下关系:n=PT60(2-1)式中:n为电机转速;P为电机转一圈的脉冲数;T为输出方波信号周期。根据式(2-1)即可计算出直流电机的转速[7]。霍尔器件是由半导体材料制成的一种薄片,在垂直于平面方向上施加外磁场B,在沿平面方向两端加外电场,则使电子在磁场中运动,结果在器件的两个侧面之间产生霍尔电势。其大小和外磁场及电流大小成比例。霍尔开关传感器由于其体积小,无触点,动态特性好,使用寿命长等特点,故在测量转动物体旋转速度领域得到了广泛应用[8]。2.2.4反相器74LS1474LS14是一个6反相器,引脚定义如图2-7所示:A端为输入端,Y端为输出端,一片芯片一共6路,即1,3,5,9,11,13为输入端,2,4,6,8,10,12为输出端,输8出结果与输入结果反相。即如果输入端为高电平,那么输出为低电平。如果输入低电平,输出为高电平。图2-7反相器引脚图2.2.5光电耦合器光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电器、变压

1 / 29
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功