湖北省十堰市2015年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..函数y=中,自变量x的取值范围是()A.x>1B.x≥1C.x<1D.x≤12..如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°3..如图所示的几何体的俯视图是()A.B.C.D.4..下列计算中,不正确的是()A.﹣2x+3x=xB.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y25..某校篮球队13名同学的身高如下表:身高(cm)175180182185188人数(个)15421则该校篮球队13名同学身高的众数和中位数分别是()A.182,180B.180,180C.180,182D.188,1826..在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)7..当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16B.﹣8C.8D.168..如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A.B.C.D.9..如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222B.280C.286D.29210..如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.二、填空题(本题有6小题,每小题3分,共18分)11..光的速度大约是300000千米/秒,将300000用科学记数法表示为.12..计算;3﹣1+(π﹣3)0﹣|﹣|=.13..不等式组的整数解是.14..如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.15..如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为米.(结果保留根号)16..抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)三、解答题(本题有9小题,共72分)17..化简:(a﹣)÷(1+)18..如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.19..在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?20.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.21.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.22.如图,点A(1﹣,1+)在双曲线y=(x<0)上.(1)求k的值;(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20253035z(元)1700160015001400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.25.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.2015年湖北省十堰市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..函数y=中,自变量x的取值范围是()A.x>1B.x≥1C.x<1D.x≤1考点:函数自变量的取值范围..分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2..如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°考点:平行线的性质..分析:先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.解答:解:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.3..如图所示的几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图..分析:根据从上面看得到的视图是俯视图,可得答案.解答:解:从上面看是一个大正方形,大正方形内部的左下角是一个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.4..下列计算中,不正确的是()A.﹣2x+3x=xB.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y2考点:整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式..分析:根据同类项、同底数幂的除法、积的乘方以及整式的乘法计算即可.解答:解:A、﹣2x+3x=x,正确;B、6xy2÷2xy=3y,正确;C、(﹣2x2y)3=﹣8x6y3,错误;D、2xy2•(﹣x)=﹣2x2y2,正确;故选C.点评:此题考查同类项、同底数幂的除法、积的乘方以及整式的乘法,关键是根据法则进行计算.5..某校篮球队13名同学的身高如下表:身高(cm)175180182185188人数(个)15421则该校篮球队13名同学身高的众数和中位数分别是()A.182,180B.180,180C.180,182D.188,182考点:众数;中位数..分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.解答:解:由图表可得,众数是:182cm,中位数是:180cm.故选:A.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6..在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)考点:位似变换;坐标与图形性质..分析:根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得答案.解答:解:∵点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(﹣2,1)或(2,﹣1).故选:D.点评:此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.7..当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16B.﹣8C.8D.16考点:整式的混合运算—化简求值..分析:由x=1时,代数式ax+b+1的值是﹣2,求出a+b的值,将所得的值代入所求的代数式中进行计算即可得解.解答:解:∵当x=1时,ax+b+1的值为﹣2,∴a+b+1=﹣2,∴a+b=﹣3,∴(a+b﹣1)(1﹣a﹣b)=(﹣3﹣1)×(1+3)=﹣16.故选:A.点评:此题考查整式的化简求值,运用整体代入法是解决问题的关键.8..如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A.B.C.D.考点:动点问题的函数图象..分析:根据蚂蚁在上运动时,随着时间的变化,距离不发生变化,得出图象是与x轴平行的线段,即可得出结论.解答:解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过半径OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离S不变,图象是与x轴平行的线段;走另一条半径OB时,S随t的增大而减小;故选:B.点评:本题主要考查动点问题的函数图象;根据随着时间的变化,到弧AB这一段,蚂蚁到O点的距离S不变,得到图象的特点是解决本题的关键.9..如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2