第1页,共15页高考数学一诊试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.=( )A.B.C.D.2.已知全集U=R,集合A={x|-3≤x≤1},B={x|x<-2,或x>2},那么集合A∩(∁UB)=( )A.{x|-3≤x<-2}B.{x|-3≤x<2}C.{x|-2≤x≤1}D.{x|x≤1,或x≥2}3.已知平面向量,的夹角为,=(0,-1),||=2,则|2+|=( )A.4B.2C.2D.24.抛物线y2=8x的焦点到双曲线-x2=1的渐近线的距离是( )A.B.C.D.5.已知函数f(x)的图象如图所示,则f(x)的解析式可能是( )A.f(x)=e|x|•cosxB.f(x)=ln|x|•cosxC.f(x)=e|x|+cosxD.f(x)=ln|x|+cosx6.若函数f(x)=asinx+cosx在[-,]为增函数,则实数a的取值范围是( )A.[1,+∞)B.(-∞,-]C.[-,1]D.(-∞,-]∪[1,+∞)7.若某程序框图如图所示,则该程序运行后输出的值是( )A.B.C.D.第2页,共15页8.《数术记遗》是《算经十书》中的一部,相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)太乙、两仪、三才、五行、八卦、九宫、运筹、了知、成数、把头、龟算、珠算计数14种计算器械的使用方法某研究性学习小组3人分工搜集整理14种计算器械的相关资料,其中一人4种、另两人每人5种计算器械,则不同的分配方法有( )A.B.C.D.CCC9.在△ABC中,A=120°,BC=14,AB=10,则△ABC的面积为( )A.15B.15C.40D.4010.四棱锥P-ABCD的顶点均在一个半径为3的球面上,若正方形ABCD的边长为4,则四棱锥P-ABCD的体积最大值为( )A.B.C.D.11.直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知,则p=( )A.2B.C.D.412.已知函数f'(x)是函数f(x)的导函数,,对任意实数都有f(x)-f'(x)>0,则不等式f(x)<ex-2的解集为( )A.(-∞,e)B.(1,+∞)C.(1,e)D.(e,+∞)二、填空题(本大题共4小题,共20.0分)13.若实数x,y满足约束条件,则z=x-y的最大值是______.14.已知α,β均为锐角,cosα=,tan(α-β)=-,则cosβ=______.15.直三棱柱ABC-A1B1C1中,底面为正三角形,AB=2,D是AB的中点,异面直线AC1与CD所成角的余弦值是,则三棱柱ABC-A1B1C1的表面积等于______.16.已知定义在R上的偶函数f(x),满足f(x+4)=f(x)+f(2),且在区间[0,2]上是增函数,①函数f(x)的一个周期为4;②直线x=-4是函数f(x)图象的一条对称轴;第3页,共15页③函数f(x)在[-6,-5)上单调递增,在[-5,-4)上单调递减;④函数f(x)在[0,100]内有25个零点;其中正确的命题序号是______(注:把你认为正确的命题序号都填上)三、解答题(本大题共7小题,共82.0分)17.已知等差数列{an}满足a3-a2=3,a2+a4=14.(Ⅰ)求{an}的通项公式;(Ⅱ)设Sn是等比数列{bn}的前n项和,若b2=a2,b4=a6,求S7.18.为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:cm),经统计其增长长度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成频率分布直方图,如图所示其中增长长度为27cm及以上的产品为优质产品.(Ⅰ)求图中a的值;(Ⅱ)已知这120件产品来自于A,B两个试验区,部分数据如下列联表:A试验区B试验区合计优质产品20非优质产品60合计将联表补充完整,并判断是否有99.9%的把握认为优质产品与A,B两个试验区有关系,并说明理由;下面的临界值表仅供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:,其中n=a+b+c+d)(Ⅲ)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数X的分布列和数学期望EX.19.如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥CD,∠ADC=120°,PD=AD=AB=2,CD=4,点M为棱PC的中点.第4页,共15页(Ⅰ)证明:BM∥平面PAD;(Ⅱ)求二面角A-BM-C的余弦值.20.已知椭圆C:+=1(a>b>0)的离心率为,且经过点M(,).(Ⅰ)求椭圆C的方程;(Ⅱ)与x轴不垂直的直线l经过N(0,),且与椭圆C交于A,B两点,若坐标原点O在以AB为直径的圆内,求直线l斜率的取值范围.21.已知函数f(x)=x2-xlnx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若+-<0在(1,+∞)上恒成立,求实数k的取值范围.22.在平面直角坐标系xOy中,直线C1的参数方程为(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为ρ=.(Ⅰ)求C1和C2的直角坐标方程;(Ⅱ)过点P(3,2)作直线C1的垂线交曲线C2于M,N两点,求|PM|•|PN|.第5页,共15页23.已知函数f(x)=|x-2|(Ⅰ)解不等式;f(x)+f(2x+1)≥6;(Ⅱ)已知a+b=1(a,b>0).且对于∀x∈R,f(x-m)-f(-x)≤恒成立,求实数m的取值范围.第6页,共15页答案和解析1.【答案】A【解析】解:=.故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.【答案】C【解析】解:∁UB={x|-2≤x≤2};∴A∩(∁UB)={x|-2≤x≤1}.故选:C.进行交集、补集的运算即可.考查描述法的定义,以及交集和补集的运算.3.【答案】B【解析】解:由题意,∵=(0,-1),=1.∴|2+|2=()2=42+2+4=4•1+4+4=8+4•cos=8+4•1•2•(-)=4.∴|2+|=2.故选:B.本题可将模进行平方一下,然后根据向量性质计算,最后得出模平方的值,最终算出结果.本题主要根据向量性质进行计算,属基础题.4.【答案】C【解析】【分析】本题考查抛物线和双曲线的方程和性质,考查渐近线方程和焦点的求法,属于基础题.求得抛物线的焦点和双曲线的一条渐近线方程,运用点到直线的距离公式可得所求距离.【解答】解:抛物线y2=8x的焦点为(2,0),双曲线-x2=1的一条渐近线方程设为y=2x,可得抛物线的焦点到双曲线的渐近线距离为=.故选:C.5.【答案】D【解析】解:由图可知f()>0,故可排除A,B;对于C:f(x)=e|x|+cosx,当x∈(0,1)时f(x)>0,故可排除C.故选:D.第7页,共15页采用排除法排除A,B,C.本题考查了函数图象与图象的变换,属中档题.6.【答案】A【解析】解:①当a=0时,函数f(x)=asinx+cosx在[-,]上先增后减,结论不成立.②当a≠0时,f(x)=asinx+cosxf′(x)=acosx-sinx,若f(x)在[-,]上为单调增函数,则acosx-sinx≥0在[-,]上恒成立,故a≥tanx在[-,]上恒成立,而y=tanx在[-,]上的最大值是1,∴a≥1.∴实数a的取值范围是[1,+∞).故选:A.先看a=0时,已知条件不成立,再看a≠0时,求出函数的导数,结合三角函数的性质求出a的范围即可.本题主要考查了三角函数的性质,三角函数的单调性,属于中档题.7.【答案】C【解析】解:由程序框图知:算法的功能是求S=+++…+=1-+-+…+-=1-,∵满足条件k>10的最小k=11,∴当k=11时,程序运行终止,此时S=1-=.故选:C.算法的功能是求S=+++…,判断当k=11时,程序运行终止,利用裂项相消法求出S值.本题考查了循环结构的程序框图,由框图的流程判断算法的功能是解答此类问题的关键.8.【答案】A【解析】解:将14种计算器械的相关资料分成满足题意的3组只有4,5,5则不同的分配方法有,故选:A.根据题意,分析有14种计算器械的相关资料分成满足题意的3组只有4,5,5,计算即可本题考查分组分配的问题,先分组再分配时关键,属于中档题.9.【答案】B第8页,共15页【解析】【分析】本题主要考查了余弦定理,三角形的面积公式在解三角形中的应用,属于基础题.由已知利用余弦定理可求AC的值,根据三角形的面积公式即可计算得解.【解答】解:∵A=120°,BC=14,AB=10,∴由余弦定理可得:142=102+AC2-2×10×AC×cosA,可得:AC2+10AC-96=0,∴解得:AC=6或-16(舍去),∴S△ABC=AB•AC•sinA==15.故选:B.10.【答案】D【解析】【分析】由题意,可得当四棱锥P-ABCD为正四棱锥时体积最大,画出图形,求出四棱锥的高,代入棱锥体积公式求解.本题考查球内接多面体体积最值的求法,明确当四棱锥P-ABCD为正四棱锥时体积最大是关键,是中档题.【解答】解:四棱锥P-ABCD的所有顶点都在同一球面上,底面ABCD为正方形,球的半径为3,下底面的边长为4,若四棱锥P-ABCD的体积最大,则球心在高上,且四棱锥为正四棱锥.设四棱锥的高为h,则下底面的中心G到B的距离GB=,可得OG2+GB2=OB2,即,可得h=2(舍)或h=4.则该四棱锥的体积的最大值V=.故选D.11.【答案】C【解析】【分析】利用抛物线的定义、相似三角形的性质即可求出.熟练掌握抛物线的定义、相似三角形的性质是解题的关键.【解答】解:过A,B分别作准线的垂线交准线于E,D.准线与x轴交于点G,∵,∴|AE|=4,|CB|=3|BF|,且|BF|=|BD|,设|BF|=|BD|=a,则|BC|=3a,根据三角形的相似性可得,即,解得a=2,∴,即,∴.故选:C.第9页,共15页12.【答案】B【解析】解:设g(x)=,则g′(x)==.∵对任意实数都有f(x)-f'(x)>0,∴g′(x)<0,即g(x)为R上的减函数.g(1)=.由f(x)<ex-2,得,即g(x)<g(1).∵g(x)为R上的减函数,∴x>1.∴不等式f(x)<ex-2的解集为(1,+∞).故选:B.由已知f(x)-f'(x)>0,可联想构造函数g(x)=,利用导数得其单调性,把要求解的不等式转化为g(x)<g(1)得答案.本题考查利用导数研究函数的单调性,构造函数是解答该题的关键,是中档题.13.【答案】8第10页,共15页【解析】解:画出约束条件表示的平面区域如图所示,由图形知,当目标函数z=x-y过点A时取得最大值,由,解得A(6,-2),代入计算z=6-(-2)=8,所以z=x-y的最大值为8.故答案为:8.画出约束条件表示的平面区域,利用图形求出最优解,计算目标函数的最大值.本题考查了简单的线性规划应用问题,是基础题.14.【答案】【解析】解:∵0<α<,cosα=,∴sinα=,∴tanα=.∵tan(α-β)===-,解得tanβ=.联立,解得cosβ=(β为锐角).故答案为:.由已知求得tanα,进一步求得tanβ,结合平方关系即可求得cosβ.本题考查了三角函数的基本关系式、正切公式、两角和的余弦公式等基础知识与基本方法,属于基础题.15.【答案】【解析】解:设三棱柱高为h,以A为坐标原点,建立如图坐标系,则A(0,0,0),B(1,,0),C(2,0,0),第11页,共15页D(,,0),C1,(2,0,h),∴=(2,0,h),=(-2,,0)=(-,,0),异面直线AC1与C