薄膜材料的应用与发展

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

薄膜材料的应用与发展薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。各类薄膜在生产与生活中的运用以及展望。1膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。2膜材料的应用人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死率[1]3膜材料的分类近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。3.1金刚石薄膜金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。金刚石薄膜属于立方晶系,面心立方晶胞,每个晶胞含有8个C原子,每个C原子采取sp3杂化与周围4个C原子形成共价键,牢固的共价键和空间网状结构是金刚石硬度很高的原因.金刚石薄膜有很多优异的性质:硬度高、耐磨性好、摩擦系数效、化学稳定性高、热导率高、热膨胀系数小,是优良的绝缘体。利用它的高导热率,可将它直接积在硅材料上成为既散热又绝缘的薄层,是高频微波器件、超大规模集成电路最理想的散热材料。利用它的电阻率大,可以制成高温工作的二极管,微波振荡器件和耐高温高压的晶体管以及毫米波功率器件等。金刚石薄膜的许多优良性能有待进一步开拓,我国也将金刚石薄膜纳入863新材料专题进行跟踪研究并取得了很大进展、金刚石薄膜制备的基本原理是:在衬底保持在800~1000℃的温度范围内,化学气相沉积的石墨是热力学稳定相,而金刚石是热力学不稳定相,利用原子态氢刻蚀石墨的速率远大于金刚石的动力学原理,将石墨去除,这样最终在衬底上沉积的是金刚石薄膜。3.2铁电薄膜铁电薄膜的制备技术和半导体集成技术的快速发展,推动了铁电薄膜及其集成器件的实用化。铁电材料已经应用于铁电动态随机存储器(FDRAM)、铁电场效应晶体管(FEET)、铁电随机存储器(FFRAM)、IC卡、红外探测与成像器件、超声与声表面波器件以及光电子器件等十分广阔的领域。铁电薄膜的制作方法一般采用溶胶-凌胶法、离子束溅射法、磁控溅射法、有机金属化学蒸汽沉积法、准分子激光烧蚀技术等.已经制成的晶态薄膜有铌酸锂、铌酸钾、钛酸铅、钛酸钡、钛酸锶、氧化铌和锆钛酸铅等,以及大量的铁电陶瓷薄膜材料。3.3氮化碳薄膜1985年美国伯克利大学物理系的M.L.Cohen教授以b-Si3N4晶体结构为出发点,预言了一种新的C-N化合物b-C3N4,Cohen计算出b-C3N4是一种晶体结构类似于b-Si3N4,具有非常短的共价键结合的C-N化合物,其理论模量为4.27Mbars,接近于金刚石的模量4.43Mbars.随后,不同的计算方法显示b-C3N4具有比金刚石还高的硬度,不仅如此,b-C3N4还具有一系列特殊的性质,引起了科学界的高度重视,目前世界上许多着名的研究机构都集中研究这一新型物质.

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功