青岛科技大学自动化与电子工程学院测控技术与仪器131会议筹备问题摘要本文主要研究会议的筹备问题。一次成功的会议,是以前期充分的筹备为前提的。会议筹备的完善与否,将直接关系着会议的经费问题,调动人员是否方便以及与会代表的满意程度,因此,会议筹备的优化问题具有重要意义。本文对此问题建立了线性拟合,线性规划等数学模型并利用Matlab软件及Lingo软件解决了优化问题。首先根据以往几届会议代表回执和与会情况预测与会人数,通过线性拟合的方法对近几届发来回执的代表数与实际的到会人数之间利用Matlab软件进行了直线拟合和曲线拟合,并通过线性回归的方法选取较为准确的预测值,预测出第五届与会人数为639人。再由与会人数和代表有关住房要求预订宾馆的客房,预订时考虑到经济,方便和代表是否满意三方面的优化,建立了线性规划模型,实现了宾馆的选择和客房的分配,利用Lingo软件求解所得结果见模型求解部分表6。然后对会议室的租借问题进行了求解,同样建立了线性规划模型,得到会议只安排结果为:选择2号宾馆130人间2个,3号宾馆150人间1个,7号宾馆140人间2个,200人间1个。由于事先无法知道哪些代表准备参加哪个分组会,所以在向汽车租赁公司租用客车接送代表时,首先明确了在每个旅馆入住的代表人数,又计算出每个旅馆需要出行的人数,再根据出行代表人数安排车辆,考虑到经济和方便两个方面,得出结果见模型求解中表9所示。最后本文对模型进行了客观的评价,提出了对模型进行改进的建议,并对模型在其它领域的应用做了推广。关键词:线性拟合;精度分析;线性规划;优化分析1.问题重述某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。根据这届会议代表回执整理出来的有关住房的信息见附表2。从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。附表2,3都可以作为预订宾馆客房的参考。需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。2.模型假设1)由于宾馆的会议室最大规模为200人,所以假设分组会议的最大规模为200人;2)假设备选宾馆及车辆闲置,可供我们任意选择;3)假设代表是否满意只与是否分到符合自己住房要求的房间有关;4)假设提出住房要求的代表回执数即为发来回执的代表数量;5)假设预测人数住房要求情况比例与回执中代表住房要求比例相同;6)假设每个代表参加每个会议的概率为1/6;3.通用符号说明序号符号符号说明1i表示宾馆号码,1,2,...,in2j表示住房种类:合住1,合住2,合住3,独住1,独住2,独住3,1,2,...,6j3ijx表示预订第i个宾馆的第j类住房的数量4ijA表示第i个宾馆的第j类住房的数量5ja表示实际与会代表对j类住房的需求总数量6jb表示第i个宾馆的房间总数7Q表示租用会议室的总租金8z表示预订宾馆的数量9k,l,m表示与会代表实际需求的房间数10iq表示租用第i个会议室的租金11ic表示第i个会议室可容纳的人数4.模型的建立与求解4.1问题分析若要从经济、方便、代表满意几个方面制定一个合理方案,打算首先预测今年与会人数,拟建立线性拟合模型,想要根据以往几届会议代表回执和与会情况预测与会人数进行直线拟合与曲线拟合,求值以后再进行比较,通过Matlab软件求得直线拟合与曲线拟合的方程,得到两个预测值,准备利用灵敏度分析获得一个更加精确的预测值;再打算进行住房的安排,拟建立线性规划模型,根据经济原则,兼顾代表回执中的住房要求,完成住房安排。同样打算利用线性规划的方法解决会议室租借的问题。在完成客车的租借时,由于事先无法知道哪些代表准备参加哪个分组会,首先想要明确在每个旅馆入住的代表人数,再计算出每个旅馆需要出行的人数,最后在经济和方便的原则下,根据出行代表人数安排车辆。4.2模型准备1)对附表二中所给出信息进行统计可知,第五届发来回执数为755。2)在确定宾馆、入住房间及人员数量时,我们根据经济、方便、代表满意的前提,遵循选定宾馆数量最少、.各宾馆之间距离最近、代表满意三个原则,对题目所给的数据进行了预处理,见附录2中表1,表2,表3,表4,表5。通过宾馆的位置分布图可以看出7号宾馆的位置与周围多家宾馆相近,交通最为方便,所以,选取了7号宾馆为中心寻找其他宾馆。3)在租借会议室时,由于会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室,且事先无法知道哪些代表准备参加哪个分组会,所以,如不考虑每组会议的人数我们可以选择7号宾馆,既可以满足人数上的需求,又只在一个宾馆,比较方便,而且花费最少。4.3模型建立4.3.1预测今年与会人数时采用线性拟合模型1)线性拟合原理[1]一元线性拟合是指两个变量x、y之间的直线因果关系,01iiiYX(1,2,...,)in(1)其中,(,)ijXY表示(,)XY的第i个观测值,0,1为参数,01iX为反映统计关系直线的分量,i为反映在统计关系直线周围散布的随机分量,2~(0,)iN,i服从正态分布。式(1)中0,1均为未知数,根据样本数据对0和1进行统计,tyrsz0和1的估计值为0b和1b,建立一元线性方程:^01YbbX(2)一般而言,所求的0b和1b应能使每个样本观测点(,)ijXY与拟合直线之间的偏差尽可能小。2)最小二乘原理[1]利用最小二乘原理,可以选出一条最能反映Y与X之间关系规律的直线。令2011[()]niiiQYbbX(3)其中Q达到最小值,0b和1b称为最小二乘法估计量,根据微积分中极值的必要条件01102[()]0niiiQYbbXb(4)01112[()]0niiiiQYbbXXb(5)1121()()niiiniiXXYbXX(6)01bYbX(7)残差^01iiiieYYYbbX代表观测点对于拟合直线的误差。可以证明^^222111()()()nnniiiiiiYYYYYY(8)残差越小,各观测值聚焦在拟合直线周围的紧密程度就越大,说明直线与观测值的拟合越好。3)选取拟合程度更好的曲线为了曲线拟合的优劣,取4,3,2,1m四种曲线类型,以便观测m取值不同时,多项式拟合程度的好坏,从而选取一条拟合误差较小的曲线。拟合优度R是衡量所配曲线拟合原始数据效果好坏的指标,拟合优度:2121()1()niiiniiiYyRYy(9)其中,拟合优度R的取值为0,1,R越接近1时所配曲线拟合效果越好,根据拟合优度R来选取较为理想的曲线类型。4.3.2线性规划模型[2](一)在确定住房安排时,模型建立过程如下:1)确定目标函数为了确定宾馆i是否被预定,引入0-1变量,确定宾馆数量,即:10if(10)其中1代表预订宾馆,0代表不预订宾馆。根据题意要求,本文将预订宾馆数量最少作为目标函数即:1niiminzf(11)2)确定约束条件约束条件一:由于单人间数量不足,独住的人可以安排在双人间,所以双人间数量要比实际合住数量多,因此:n所宾馆的第j类住房数量之和不小于预订第j类住房的总数量(j=1,2,3分别代表附表中的前三种情况),即:1(1,2,3)nijjixaj(12)宾馆的第j类住房数量之和不大于预订第j类住房的要求总数量(j=4,5,6分别代表附表中的后三种情况),即:1(4,5,6)nijjixaj(13)约束条件二:预订宾馆i的房间数之和不大于宾馆i的房间总数,即:61ijiijxbf(14)约束条件三:由于单间数量不足,为满足代表们独住的要求,需使得合住1与独住1,合住2与独住2,合住3与独住3,分别满足预订房间的总和不小于与会代表实际需求的房间数k,l,m,即:1411nniiiixxk(15)5211nniiiixxl(16)3611nniiiixxm(17)约束条件四:预订i宾馆j类房间的数量不大于该种的房间数量,即:ijijxA(18)其中,ijA为宾馆i第j种房间的数量。3)综上所述建立模型1niiminzf(19)1161141152113611(1,2,3)(4,5,6)..nijjinijjiijiijnniiiinniiiinniiiiijijxajxajxbfstxxkxxlxxmxA(20)(二)在完成会议室的租借问题时,建立模型如下:1)确定目标函数为了预测会议室的选址,再次引入0,变量,建立以会议室租金为目标函数的线性规划模型。设共有n个会议室可以租借,if代表0或1,其中0代表不租用会议室,1代表租用会议室。根据经济性的原则,为了使花费最少,则使目标函数为:租用会议室租金选定各宾馆会议室租金乘以if。即1niiiqfmin(21)2)约束条件若一共有n间会议室,有p组会议,且会议室可容纳人数大于与会代表总人数N,则11niiniiifpcfN(22)4.4模型求解4.4.1预测今年与会人数我们打算根据今年发来回执的代表数量来预测今年到会的人数,由于实际到会人数发来回执的代表数量发来回执但未与会的代表数量未发回执而与会的代表数量,故先对以往几届会议代表回执和与会情况进行了整理得到表6如下:表6以往几届会议代表回执和与会情况第一届第二届第三届第四届发来回执的代表数量315356408711发来回执但未与会的代表数量89115121213未发回执而与会的代表数量576975104与会人数283310362602为使预测值尽可能的精确,分别采用直线拟合与曲线拟合的方法求值以后再进行比较。对发来回执的代表数与实际的到会人数之间的关系使用Matlab软件进行直线拟合与曲线拟合。由Matlab软件求解得到:1)直线拟合方程0.809626.9620yx(23)所以预测第五届与会人数为639人。2)曲线拟合方程20.00010.93452.2607yxx(24)所以预测第五届与会人数为647人。为了比较这两种拟合的优劣,利用Matlab软件进行曲线回归。线性回归结果如图1,图2所示:图1图2二次曲线回归结果如图3,图4所示:图3图4由此可知,对于线性回归方程,0.9992R;对于二次曲线回归方程,0.9993R。比较两者R值,可以确定二次曲线回归较为理想,因此,本文考虑二次曲线回归模型进行研究。所以我们预测第五届与会人数为639人。4.4.2确定住房安排目标函数:101iiminzf(25)约束条件:10110161101014111010521110103611(1,2,3)(4,5,6)..24815275ijjiijjiijiijiiiiiiii