5.3.2命题、定理、证明请同学看下列语句(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.像这样判断一件事情的语句,叫做命题(proposition).命题的概念判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()√√命题的结构命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.许多数学命题常可以写成“如果……,那么……”的形式.“如果”后面连接的部分是题设,“那么”后面连接的部分就是结论.将下列命题改写成“如果……,那么……”的形式.(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.如果两条直线被第三条直线所截,那么同旁内角互补;如果等式两边都加同一个数,那么结果仍是等式;如果两个数互为相反数,那么这两个数相加得0;如果两个角是同旁内角,那么这两个角互补;如果两个角互为对顶角,那么这两个角相等.下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.√√√命题的真假真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题(正确的命题叫真命题)假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题(错误的命题叫假命题)下列句子哪些是命题?是命题的,指出是真命题还是假命题?1、猪有四只脚;2、内错角相等;3、画一条直线;4、四边形是正方形;5、你的作业做完了吗?6、同位角相等,两直线平行;7、对顶角相等;8、同垂直于一直线的两直线平行;是真命题否是假命题是假命题否是真命题是真命题是真命题是已知:b∥c,a⊥b.求证:a⊥c.证明:∵a⊥b(已知),又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等).∴∠2=∠1=90º(等量代换).∴∠1=90º(垂直的定义).∴a⊥c(垂直的定义).证明:推理的过程定理:真命题课堂小结1、命题:判断一件事情的语句叫命题。2、定理:真命题叫定理。也可作为继续推理的依据。3、证明:推理的过程叫证明判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例。(1)正确的命题称为真命题,错误的命题称为假命题。(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果…,那么…”的形式。