吉林省松原市扶余县第一中学2013届高考数学一轮复习 抛物线综合复习课课件 理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

图形焦点准线标准方程xxxxyyyyooooFFFF)0,2(pF2px)0(22ppxy)0,2(pF)2,0(pF)2,0(pF2px2py2py)0(22ppxy)0(22ppyx)0(22ppyx练习:已知抛物线的焦点为F(-2,0)准线方程x=2,则抛物线方程为()A.B.C.D.xy42xy82281yx241yxxy82抛物线的方程为,82,22,pp依题意得解:故选B.(如图)yox求它的标准方程经过点并且顶点在坐标原点轴对称已知抛物线关于例),32,3(,,:My解:).0(22PPyx故可设抛物线方程为.43),32(2)3(2PP.23,2yx故所求抛物线方程为).32,3(,My顶点在原点且过点轴对称因抛物线关于,在抛物线上点M.,5||),3,(,:求抛物线方程并且经过点轴上在抛物线的焦点例AFmAxF解一).0(2222PPxyPxy或设抛物线方程为,)3,(在抛物线上点mA,2)3(2)3(22PmPm或,29Pm5||2||mPAF由抛物线的定义得.91,0910,52922PPPPPP或解这个方程得即.182,22xyxy或故所求抛物线方程为.,5||),3,(,:求抛物线方程并且经过点轴上在抛物线的焦点例AFmAxF解二).0(2222PpxyPxy或设抛物线方程为),()3,(如图在抛物线上点mAPm2)3(259)2(||)0,2(2pmAFpF得由焦点.182,22xyxy或故所求抛物线方程为oyxFA.91259)2(292或得解方程组ppmpm.,5||),3,(,:求抛物线方程并且经过点轴上在抛物线的焦点例AFmAxF解三).0(2222PPxyPxy或设抛物线方程为.182,22xyxy或故所求抛物线方程为oyxFAH4||,5||,3||,,FHAFAHxAH则轴作如图.42||,42||pmpm或5||2||mPAF由抛物线的定义得.91,29||52||42||pPmpmpm或得解方程组.:,,,)0(2:21212物线的准线相切为直径的圆和抛以求证两点交抛物线于任作一条直线的焦点过抛物线例PPPPlFPPxy证明:的作准线分别过的中点为设lPPPPPP2121,,,,,,,2211根据抛物线的定义得垂线段QPPQQP|,||||,|||222111QPFPQPFP|,|||||||||22112121QPQPFPFPPP|,|||,////212211PPPPQPPQQP|,|21|)||(|21||212211PPQPQPPQ,,,,21lPQPQP又三点共圆故.,21准线相切为直径的圆和抛物线的以所以PP1P2PFOyx1Q2QQP.:,,22,2OBOABAxyxy求证点相交于与抛物线直线如图xyoAB:,x2y2xy:12得中代入将证法x22x204x6x2.53,5321xx.51,5121yy5351k,5351kOAOB1kkOAOB.OBOA例::1得方程由证法04x6x24xx,6xx:2121由根与系数关系得2xy,2xy22112x2xyy21214xx2xx212141244144xyxykk2211OAOB.OBOA证法2:.:,,,2:221212pyyyypxy求证两个交点的纵坐标为线相交抛物的焦点的一条直线和此过抛物线练习,0,2kpxkyk存在则过焦点的直线为设.21pykx即得将上式代入,px2y2.2pkyp2y2.02,22kppyky去分母后整理得222121,,pkkpyyyy则有设这个方程的两根为证明一2pxk方程为不存在则过焦点的直线若,22py由此得,py221pyy222121ppxxBBAABFAFyyAyoxABBF2222212221ppxxyy422121222221pxxxxxxpp22142122221pyypxxp4yy,,,,2211得设点yxByxA证明二:212221xxyy2221212,2pxypxyAyoxABBF221pyy证明三:)(','如图连结FBFA''FBFA),2('),,2('21ypBypA点点,22011'pyppykFA,22022'pyppykFB,1''得由FBFAkk;.2221pyy两交点纵坐标有抛物线焦点弦的几何性质:).,(),,(2211yxByxAAB交抛物线于点过焦点的弦1.当AB垂直于对称轴时,称弦AB为通径,);,2(),,2(PPBPPA交点坐标|AB|=2P,;4.3221pxx两交点横坐标有;'',',',.4FBFAlBBlAA则如图AyoxABBFlPH|;|21,,,.5ABPHHlPHABP则于中点为如图.)()(||.6212212yyxxAB弦长._________6.12准线方程是的焦点坐标是抛物线xy_____,,104.22的坐标是点则的距离是到焦点上一点抛物线PFPxy).9,6)(();6,9)(();6,9)(();9,6)((DCBA__,5),3(,.3则标准方程是焦点的距离为到其上点轴上已知抛物线的焦点在mPx_____,,)1,4(,6.42程是则这条弦所在的直线方被平分使它恰在点引一条弦过点已知抛物线PPxy练习23x)0,23(xy820113yxB看答案_____,,)1,4(,6.42程是则这条弦所在的直线方被平分使它恰在点引一条弦过点已知抛物线PPxy0113yx解一:AP(4,1)oyxBl如图,设所求直线方程为y-1=k(x-4),024666)4(122kykyxyxky由.3,26,122121kkyyyy又故所求直线方程为y-1=3(x-4)即3x-y-11=0.解二:如图,设所求直线方程为y-1=k(x-4)66),,(),,(21221212122211yyyyxxyykyxByxA则点.36,22121yykyy又即得所求直线方程为_____,,)1,4(,6.42程是则这条弦所在的直线方被平分使它恰在点引一条弦过点已知抛物线PPxy0113yx解三:AP(4,1)oyxBl如图,设所求直线方程为y-1=k(x-4),66222121xyxy由解四:),,(),,(2211yxByxA点.3,2121221xxyykyy又即得所求直线方程为)(6))((121212xxyyyy,48)(6212221xxyy,9121,222121xxyy由(三)94)(4)()(1221212212212122xxxxyyyyxxyykK=3或-3舍去-3得k=3_____,,)1,4(,6.42程是则这条弦所在的直线方被平分使它恰在点引一条弦过点已知抛物线PPxy0113yx解五:AP(4,1)oyxBl设点因P(4,1)是AB的中点,),(yxA则点B的坐标为)2,8(yx)8(6)2(622xyxy由Y=3x-11解六:),2,8(),,(yxByxA得点设点,211||,23PKPx到准线的距离为故抛物线准线方程为11)2()238()23(2222yxyxHGK||2||||||||PKBGAHBFAF由THEENDF2F1oPxy__,,,,149)3(212122横坐标的取值范围是点为钝角时当为其上的动点的焦点为椭圆PPFFPFFyx解法一||||21412121yFFSPFF),,(11yxP的坐标为设点54||1y154921x5353x解法二),,(yxP的坐标为设点21PFPF又155xyxy522yx.5314952222即得结果得解方程组xyxyx__,,,,149)3(212122横坐标的取值范围是点为钝角时当为其上的动点的焦点为椭圆PPFFPFFyx解法三),,(,yxP的坐标为设点如图返回F2F1oPxyH)(211xcaacPFacPHPF由,3531xPF,353)353(62xxPF由余弦定理得:0)353)(353(2)52()353()353(cos22221xxxxPFF5353x___,3,,,13664)4(21212122的面积为那么且焦点上一点是椭圆PFFPFFFFyxP解一:723664,6,8cba.16||||,21mPFmPF则设如图oF2F1PxyM021260sin)16(||,mMFMPFMF则于作).16(2160cos)16(||),16(230mmPMm.312||||21S21PFF21MFPF,||||||,222122121MFMFFFMFF中在直角三角形,)]16(23[])16(21[)74(222mmm,124或m,36322或MF.31260sin||||21S021PFF21PFPF或___,3,,,13664)4(21212122的面积为那么且焦点上一点是椭圆PFFPFFFFyxP解二:723664,6,8cba则设如图,||,||,21nPFmPF又m+n=16m2+n2+2mn=256②由①②mn=483123mnsin21S21PFF2tanS212PFF21PFFb可以证明返回F2F1Pxy,1123cos222mnnm①由余弦定理得,的两个焦点分别为设双曲线年广东省会考154)97.(122yx_,,,,212121的面积为那么如果在这双曲线上点PFFPFPFPFFxyoF2F1P36c2PFPF222214a2PFPF21212212221PFPF2PFPFPFPF21PFPF2163610PFPF215PFPF21S21ABC解法一:如图,由已知得的两个焦点分别为设双曲线年广东省会考154)97.(122yx_,,,,212121的面积为那么如果在这双曲线上点PFFPFPFPFFxyoF2F1P,0,3,0,3,,2111得又的坐标为设点FFyxP13xy3xy15y4x1111212135y15yFF21S121ABC解法二:返回3PFF,FF,P19y16x.5212122且是双曲线的两个焦点上一点双曲线__________PFF,21的面积是则yxoF2F1P.,2121nPFmPFPFF中设在36mn393sin2121mnSPFF解:返回.5916,3,4cba由余弦定理得:1003cos222122FFmnnm①.6428||22mnnmnm又②

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功