RNA干扰(RNAi)是有效沉默或抑制目标基因表达的过程,该过程通过双链RNA(dsRNA)使得目标基因相应的mRNA选择性失活来实现的。RNA干扰由转运到细胞细胞质中的双链RNA激活。沉默机制可导致由小干扰RNA(siRNA)或短发夹RNA(shRNA)诱导实现靶mRNA的降解,或者通过小RNA(miRNA)诱导特定mRNA翻译的抑制。这篇综述将重点介绍shRNA和siRNA是如何导致蛋白质表达抑制的。通过几种蛋白的活性(下面讨论),通过短反义核酸(siRNA和shRNA序列)锁定细胞mRNA,从而实现其随后的降解。这反过来阻断了该蛋白的进一步表达/聚集,导致其水平的下降,最终实现抑制作用。背景调控途径的发现和组成元件图1.siRNA和shRNA结构。(A)siRNAs是短的RNA双链,在3‘端有两个碱基的游离。(B)shRNA由正义链和反义链通过环状序列隔开共同组成。(C)shRNA构建用于插入表达载体。源自[1,2]。早在1984年人们就发现反义RNA能够抑制基因的表达。1993年,Nellen和Lichtenstein提出了一个模型来解释这个观察。然而,直到1998年,Fire等人发表了在线虫RNA干扰的结果,他们发现双链RNA在抑制基因表达方面实际上比单链RNA更有效。最终确定小RNA途径涉及的蛋白质组分有许多与RNA干扰途径一样。表一总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。siRNAvs.shRNA作用机制两个在RNAi途径的基因沉默中具有实质利害关系的是双链小干扰RNA(siRNA)和基于载体的短发夹RNA(shRNA)。虽然siRNA和shRNA(图1)都可用于蛋白沉默,但它们的作用机制有所不同(图2)。不管是长的双链RNA还是短的约21bp碱基对的双链都能够直接被转运到组织培养的细胞中(参见转运机制获取更多细节)。虽然有一些报道提到siRNA在转染细胞时是被转运到细胞核中的,但更普遍的看法是它们在细胞质中聚集。长的双链RNA与Dicer一起形成复合物,双链特异性的核糖核酸酶III能够将它们处理成带有两个游离碱基的长度为21-23nt的siRNA。随后这些siRNA片段与RISC结合,RISC由Argonaute-2(Ago-2)、Dicer和TAR-RNA-结合蛋白(TRBP)组成。然后RNA的两条链分开,其中一条链从复合物上分离。5'端双链稳定性最低的那条链被选择出来,稳定的并入沉默复合物中。shRNA在转染/转导细胞的细胞核中的合成,形成发夹结构,茎区成对的反义和正义链与未配对的成环核苷酸连接在一起(图1b和1c)。通过与miRNA的加工相同的RNAi机制,shRNA被加工成siRNA。使用细菌或病毒载体,shRNA被导入靶细胞的细胞核内,在某些情况下,载体可以稳定地整合到基因组中。根据驱动表达的启动子的不同,shRNA可被RNA聚合酶II或者III催化转录。在被Exportin-5转运到细胞质之前,这些初始的前体结构需要首先用Drosha及其双链RNA结合伴侣DGCR8加工形成pre-shRNA。pre-shRNA随后被Dicer和TRBP/PACT酶切,去除发卡结构,产生在两个3‘末端带有两个游离碱基的20-25nt的双链siRNA。这一有活性的siRNA随后被整合到沉默复合物上去。图2.RNAi介导的基因沉默机制。在细胞核表达后,shRNA被Drosha加工然后由Exportin-5蛋白转运到细胞质中,在细胞质中它们与Dicer结合去除环状序列。在这一点上,它们与siRNA的加工方式(以短的双链形态导入细胞,然后被Dicer识别)相同。在与RISC结合并去掉其中一条RNA链后,它们识别mRNA占有互补序列,导致其降解。源自[3]一旦被整合到RISC后,shRNA和siRNA识别靶mRNA和降解的过程基本上是相同的。作为RISC的一部分,siRNA通过碱基互补配对以序列特异性的方式结合到靶mRNA,从而利用Ago-2的核酸酶H样活性裂解靶RNA的双链中心附近的磷酸骨架。某些生物的这个系统有一个有趣的特点,siRNA与靶mRNA的退火使siRNA作为引物,而靶mRNA作为依赖于RNA的RNA聚合酶的模板。这就合成出一个新的双链RNA,然后由Dicer酶加工,形成正反馈循环,增加了siRNA的量。应当指出的siRNA通常需要完全同源才能诱导降解。该过程图2中有阐述。人们对RISC发现靶mRNA的过程还没有很好的理解。然而,Ameres等的报告显示细胞mRNA的靶序列的亲近性影响了它的剪切。他们还指出,RISC不是作用于未折叠的RNA。他们提出了一个模型,在该模型中,RISC非特异性的方式通过随机扩散与单链RNA接触,5'末端碱基配对比3'末端更有效率。这似乎决定了RISC与靶mRNA的稳定结合。shRNA比siRNA的优势包括能够使用病毒载体进行转染,克服了某些类型的细胞不能转染的难题,能选择使用诱导型启动子控制shRNA表达,能够与报告基因共表达。此外,它们能减少脱靶效应(在下面进一步讨论)。一般方案设计siRNA和shRNA许多实验室已发表了用于转染的长双链RNA的合成方案。但是,每种方法的效力是依赖于整个系统的。此外,长双链RNA会激活先天免疫反应,导致细胞死亡。影响shRNA活性的因素,包括环结构,发夹结构热力学性质,二级结构以及周围序列。siRNA和shRNA之间进行选择时,要考虑的一个重要因素是实验时间的长短。siRNA在细胞中瞬时表达的,而shRNA可以通过病毒介导的转导保持稳定。siRNA/shRNA设计指导在主要RNAi产品制造商那里都能获得19-29个核苷酸的siRNA序列通常是最有效的。长于30个核苷酸可导致非特异性沉默。识别的理想位点包括靶mRNA序列中的AA二核苷酸区和3'端19个核苷酸的位点。通常情况下,siRNA与3’端为dUdU或者dTdT的游离碱基的mRNA结合效率更高。较新的数据表明,其他种类的二核苷酸也可保持活性,但siRNA能够被核糖核酸酶在单链的G残基处裂解,因此应避免GG结构。由于mRNA往往高度折叠并于调控蛋白结合的,应该要在不同位点选择至少2-4个靶序列。避免设计含有4-6个poly(T)的序列,因为它会作为RNA合成酶III的终止信号。检查以确保您的siRNA序列与其他编码序列没有同源性。序列中的G/C含量应该在35-55%之间。shRNA应包含正义和反义序列(每个为19-21个核苷酸的长度)由环结构分隔,以及5'端AAAA的游离片段。设计环结构时,Ambion的科学家和其他人建议使用9nt的空白间隔(TTCAAGAGA),而Invivogen在某些载体中采用了长度为7nt的环(TCAAGAG),这可根据您的系统变化。3〜9个核苷酸长度的环序列被证明是有效的。此外,当创建shRNA盒时,正义链首先合成,然后是间隔序列,最后是反义链。shRNA结构中5'端游离应避免,因为它们可能会导致shRNA的沉默。除了手动设计siRNA或shRNA,也有一些设计程序可供使用。他们中有几个包含在表二中了。此外,多个公司提供预制的siRNA和shRNA序列(代表性例子见表三)。多数shRNA通过载体转录而来。表达最常见的是由聚合酶IIIU6启动子驱动,它驱动高水平的组成型表达,或由较弱的H1启动子驱动。与siRNA系统相比,shRNA的一个主要优点是,shRNA可设计为诱导性的。有商品化的四环素-开和四环素-关诱导系统,以及结构含有改良的U6启动子由昆虫蜕皮类固醇性激素蜕皮激素诱导。一个Cre-Lox重组系统已被用来实现小鼠体内的可控制表达。也有合成的shRNA可用,它不像病毒载体递送分子,可以通过如上所述的siRNA分子一样,能够通过化学修饰影响其活性和稳定性。对照为确保RNA干扰(RNAi)处理后观察到的效应是基因沉默的结果,而不是仅仅因为引入的siRNA/shRNA,或由于RNA干扰途径激活造成的,很重要的一点在于设置相应的对照组(表三)。两种最常见的对照是加扰对照(ScrambledControl)和非识别对照(Non-targetingControl)。加扰对照正像它听起来的那样,包含获取siRNA或shRNA序列然后随机重新排列其核苷酸序列。非识别对照,在另一方面,也是一个siRNA/shRNA序列,它被设计成不能锚定靶生物的任何已知的基因。这些对照激活了RNAi机制,使得导入的双链RNA对基因表达有基本的影响。然而,应该指出的是,即使是非识别siRNA对照也会诱导细胞内的应激反应。虽然这两种类型的对照序列都将被纳入Dicer并激活RNAi途径,但加扰对照可能会针对一个预料不到的mRNA。因此,在设计加扰对照序列的时候要特别小心,以确保遵循上述原则,且不会锚定其他的mRNA序列。对于shRNA,另一个重要的对照包括空载体对照,它不包含任何shRNA插入,却能保证转染/转导对基因表达的影响以及细胞的反应。最后,未经处理的细胞(无转染或转导)可作为参照比较其他细胞。这能允许您确定特定的siRNA转运方法的细胞毒性。转运确切的siRNA或shRNA转运方案取决于您正在使用的细胞类型,因为不同类型的细胞核酸摄取的敏感性不同,包括您是否利用siRNA或shRNA介导的沉默,以及您正在做的实验的时间长度。转染、电穿孔、以及某些病毒转运方法是瞬时的,而慢病毒或逆转录病毒转导可将shRNA稳定整合到细胞基因组中实现持续表达。质粒DNA或双链RNA的转染或电转转染和电穿孔是其中最常见的核酸转运方式。转染涉及核酸与载体分子复合物的形成,使它们能够穿过细胞膜。质粒编码的siRNA,有时也有shRNA,通常使用这种方法进入到细胞。商品化的转染试剂可以购买或在实验室自己制备。脂质转染。具有长疏水链头部带正电荷基团的阳离子脂质体与带负电荷的siRNA相互作用,在脂双分子层环绕siRNA,随后被细胞内吞。基于阳离子聚合物的纳米粒子。这可降低毒性,提高效率,并且能够转运修饰的siRNA。脂质或细胞穿透肽(CPP)结合。这涉及到siRNA与疏水性基团(如胆固醇)或阳离子CCP(如转运蛋白或pentatratin)的结合,能够促进向靶细胞的转运。在电穿孔实验中,电场施加到由磷脂分子和带负电荷的头部基团组成的细胞膜上。电脉冲引起磷脂的重新调整,在细胞膜上制造出孔道,允许siRNA的进入。电穿孔法常用于难以被转染的细胞。然而,针对每种细胞类型需要优化特定的设置(电压,脉冲数和脉冲长度)。利用病毒载体转导慢病毒/逆转录病毒有许多慢病毒和逆转录病毒质粒适合shRNA的表达(请参阅下面的产品部分)。虽然根据不同实验(如靶细胞类型实验等)具体的质粒和shRNA设计可能会略有变化,基本的shRNA表达结构包含聚合酶III启动子、紧跟的shRNA(有义链、环状结构和反义链以及随后的五个T碱基)、相关的增强子元件、5'和3'端的LTR区以及一个包装序列。这一慢病毒或逆转录病毒质粒与包装质粒一起共转染到包装细胞系(如293T)中,包装质粒编码慢病毒生产所需的催化和包装蛋白。复制缺陷的慢病毒可用于转导靶细胞。慢病毒和逆转录病毒核酸转运的详细实验方案,请参阅核酸转运:慢病毒和逆转录病毒载体。腺病毒载体腺病毒是小的双链DNA病毒能够感染大多数类型的细胞。重组腺病毒有几个复制删除必需基因,能实现仅在互补包装细胞(293细胞)的复制和传播。通过腺病毒衍生载体转运的DNA能够在细胞核内保持外染色体的状态,使其表达是瞬时表达,却可以消除插入突变的风险。腺病毒载体具有极为广泛的细胞趋性,在实验室中可以安全操作。虽然在组织培养实验中这是优势,但这些载体在临床上会出现问题。腺相关病毒(AAV)腺相关病毒(AAV)是一种小的单链DNA(ssDNA)病毒,在没有共感染辅助病毒帮助的情况下不能复制,如单纯疱疹病毒或腺病毒。腺相关病毒感染