7电工与电子技术之电工技术(康润生)第三章习题答案1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第3章正弦交流电路的稳态分析本章的主要任务是学习正弦量、正弦交流电路和相量法的基本概念、正弦交流电路的稳态分析与计算、正弦交流电路功率的概念和计算。在此基础上理解和掌握功率因数提高的意义,和谐振的概念。本章基本要求(1)正确理解正弦量和正弦交流电路概念;(2)正确理解相量法引入的意义;(3)正确理解有功功率和功率因数的概念;(4)掌握相量法;(5)掌握电路定律的相量形式和元件约束方程的相量形式;(6)分析计算正弦稳态电路;(7)了解功率因数提高的意义;(8)了解谐振的概念。本章习题解析3-1已知正弦电压和电流的三角函数式,试用有效值相量表示它们,并画出它们的相量图。(1))20sin(210tiA,)60sin(2150tuV(2))20sin(28tiA,)45sin(2120tuV(3))30sin(25tiA,)90sin(2100tuV解(1)2010IA,60150UV,相量图如图3-1(a)所示。(2))20(10IA,)45(120UV,相量图如图3-1(b)所示(3)305IA,90100UV,相量图如图3-1(c)所示3-2已知电压、电流的相量表示式,试分别用三角函数式、波形图及相量+1+jIU(a)+1+jIU(b)+1+jIU(c)图3-1图表示它们。(1)4030jUV,43jIA(2)100UV,43jIA(3)V10045jeU,A44jI解(1))13.53(504030jU=13.53sin5013.53cos50j,V)13.53(543jI=13.53sin513.53cos5j,A波形图相量图如图3-2(a)所示。(2)100U=0sin1000cos100j,V)13.53(543jI=)13.53sin(5)13.53cos(5j,A波形图相量图如图3-2(b)所示。(3)45100jeU=45sin10045cos100j,V0u,iwt0u,i0wtu,i+1+jIU(a)(b)(c)+1+jIU+1+jIU图3-2)45(66.544jI=45sin66.545cos66.5j,A波形图相量图如图3-2(c)所示。3-3已知电感元件的电压V22045jeU,电感100LmH,电源频率50fHz。求电流的瞬时表达式?i,并画出电压U和电流I的相量图。解电流相量)45(01.710100502220345jeLjUIjA瞬时值)45314sin(201.7tiA相量图如图3-3所示。3-4已知电容元件的电容FC1.0,当电容两端加上频率为Hz300电压时,产生的电流AeIjm1045。求电容电压的瞬时值表达式?u=并画出电压U和电流I的相量图。解角频率188430014.322frads-1电容电压)45(08.53101.0188410106345jeCjIUjV相量图如图3-4所示。3-5电路如图3-5所示,kRa1,且已知电源电压u和aR两端电压Ru的波形如图所示,并设电源电压tVu628sin210。试求该无源网络在此特定频率f+1+jIU图3-3+1+jIU图3-4图3-50.8msuR7.07u14.14(b))T+_uRAΩBΩ无源网络+_u(a)Ra的等效阻抗。解设Ru和u的相位差Trad=16.0108.06283=8.28若电源电压相量010UV,无源网络的等效阻抗jXRZ1。则)8.28(5)8.28(207.7RUV而kRa1,所以整个电路的电流)8.28(5aRRUImA则)8.28(2000)8.28(10510)1000(3jXRIUZ9641753jΩ∴9647531jZΩ3-6图3-6为测量感性负载功率的电路。已知kR1,AI4.01,AI1.02,AI35.03。求负载的有功功率、无功功率及其等效参数。解设负载LLjXRZ=Z,0UU由RUI2=0.1,kR1得U=100V,即0100UV由ZUI3=0.35,得35.0100Z=285.71Ω则)(35.03I由KCLsin35.0cos35.01.0321jIII得4.0)sin35.0()cos35.01.0(221I解得43.0cos62.64所以13.25846.122)62.64(71.285jZΩ+_A1ΩA3A2Ω1I2I3IR负载U图3-61543.035.0100cos3UIPZW62.3162.64sin35.0100sin3UIQZvar3-7已知负载电压V4030jU,电流A68jI,求它们之间的相位差以及负载电阻、电抗的数值,阻抗是感抗还是容抗?解)13.53(504030jUV)87.36(1068jIA电压和电流之间的相位差26.1687.3613.53负载4.18.4)26.16(5)87.36(10)13.53(50jIUZΩ感抗3-8电路如图3-7所示,已知正弦交流电源的电压V10030jeU,61R,22R,51X,22X,23X,14X。试计算电路的总阻抗ABZ,并求电路中AC两点间的电压ACU及瞬时值表达式ACu。解如图3-7总阻抗432211jXjXjXRjXRZAB=)57.26(94.848)1225(26jjΩ2211jXRjXRZAC=)19.41(63.1078)25(26jjΩ∴UZZUABACAC=)62.44(9.118)30(100)57.26(94.8)19.41(63.10V+_U图3-7AΩBΩCΩR1R2jX1jX2-jX3-jX4瞬时值)62.44sin(29.118tuACV3-9两个复阻抗分别为10201jZ,10151jZ。如果将他们串联后接在电压为V22030jeU的电源上,求电路的等效阻抗和电流I;如果将它们并联后接在上述电源,求电路的等效阻抗和电流I。解串联21ZZZ=20+j10+15-j10=35Ω电流)30(29.63522030jeZUIA并联)12.7(52.1110151020)1015)(1020(2121'jjjjZZZZZΩ电流)12.37(1.19)12.7(52.1122030''jeZUIA3-10已知条件见图3-8,利用相量图计算各电路中安培表的读数。解(a)如图3-8(a)-1所示设022IA,相量图如(a)-2所示则0UU,即U和2I同相,1I滞后U90º∴2I、1I和I构成直角三角形∴安培表的读数A:即39.52221IIIA(b)如图3-8(b)-1所示设041IA,相量图如(b)-2所示则0UU,即U和1I同相,2I超前U90º∴2I、1I和I构成直角三角形∴安培表的读数A:即32122IIIA(c)如图3-8(c)-1所示设031IA,相量图如图(c)-2所示则)90(UU,即U超前1I90º,2I超前U90º∴2I和1I反相,而大小都为3A∴安培表的读数A:即0IA3-11电路如图3-9所示,已知20R,1021LLXX,3021CCXX,V314sin2120tu,试求:(1)S断开时,?ABU写出瞬时值表达式ABu。(2)S闭合时,1I、2I和I各为多少?解如图3-9所示,0120UV(1)S打开时,UXXXjRXXjRUCLLCLAB)()(22122图3-8+_I1I2IU(a)-1AΩR2jXL12A5A+_I1I2IU(b)-1AΩR-jXC5A4A+_I1I2IU(c)-1AΩjXL3A3A-jXCU(a)-22II1I2IU(b)-21II1I2IU(c)-21I2I1I+_RjXL1jXL2-jXC1-jXC2SI2IAΩDΩ图3-9UBΩ=)43.18(77.151120)301010(20)3010(20jjV∴)43.18315sin(277.151tuABV(2)S闭合时,5201203010)30(10)3010(20120)()(111122jjjjjjjXjXjXjXXXjRUICLCLCL=)04.14(5082A)04.14(73.8)04.14(82.53010301111jjjIjXjXjXICLCA)96.165(91.2)04.14(82.53010101111jjjIjXjXjXICLLA3-12电路如图3-10所示,已知电压表2V的读数V1002U,电流表2A的读数AI102。求1A表和1V表的读数。解设01002UV由于2I=10A,得1082222IUXC∴6CXΩ∴)87.36(1086arctan102IA∴)87.36(103IA由KCL321III=1687.36cos102A∴A1的读数:16A)90(808051jIjULV∴)66.38(06.1288010021jUUULV∴A1的读数:128.06V3-13电路如图3-11所示,设20LXR,3011CLCXXX,A2ΩA1ΩV1ΩV2Ω+_8Ω8Ωj5Ωj6Ω-jXC1I3I2ILU图3-10+_1UVU100。求:(1)S断开时的I、1I和2I;(2)S闭和时的I、1I和2I。解如图3-11所示设01002UV(1)S断开)45(54.3)303020(20100)(1jXXXjRUILCLA∴54.3IA54.31IA,2I=0(1)S闭合0)3020(20100)()(1111jjXjXjXjXXXjRUICLCLCL并联谐振,0I)90(33.330100211jIjXUILA∴33.332IIA3-14电路如图3-12所示,已知u为工频正弦交流电压,电路未接电容前各表读数为WP90,AII101,VU220。求当并联电容FC100后,各表的读数为多少?解如图3-12所示A1ΩA0ΩVΩWΩ**+_0I1IURLjCj1图3-12+_RjXL1jXL-jXC1-jXCSI2I1Ib图3-11Ua并联电容前21RIP得9019021IPRΩ而电感线圈阻抗模220)(122IULR∴75.2009022022LΩ并联电容后V、W、A1的读数均不变,仅A0变化。设0220UV则85.3110100314116jjCjZCΩ∴)90(91.685.312202jZUICA)85.65(175.200902201jLjRUIA∴)09.86(01.6641.0)85.65(191.6210jj

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功