变压器故障典型案例

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

变压器故障典型案例第一节短路故障案例一、老厂主变压器多次过流重合动作绕组变形(1)案例。我厂老厂#7机31.5MVA、110kV变压器(SFSZ8—31500/110)发生短路事故,重瓦斯保护动作,跳开主变压器三侧开关。返厂吊罩检查,发现C相高压绕组失团,C相中压绕组严重变形,并挤破囚扳造成中、低压绕组短路;C相低压绕组被烧断二股;B相低压、中压绕组严重变形;所有绕组匝间散布很多细小铜珠、铜末;上部铁芯、变压器底座有锈迹。事故发生的当天有雷雨。事故发生前,曾多次发生10kV、35kV侧线路单相接地。13点40分35kV侧过流动作,重合成功;18点44分35kV侧再次过流动作,重合闸动作,同时主变压器重瓦斯保护跳主变压器三侧开关。经查35kV距变电站不远处B、C相间有放电烧损痕迹。(2)原因分析。根据国家标准GBl094.5—日5规定110kV电力变压器的短路表观容量为800MVA,应能承受最大非对称短路电流系数约为2.55。该变压器编制的运行方式下:电网最大运行方式110kV三相出口短路的短路容量为1844MVA;35kV三相出口短路为365MVA;10kV三相出口短路为225.5MVA;事故发生时,实际短路容量尚小于上述数值。据此计算变压器应能承受此次短路冲击。事故当时损坏的变压器正与另一台31500/110变压器并列运行,经受同样短路冲击而另一台变压器却未损坏。因此事故分析认为导致变压器B、C相绕组在电动力作用下严重变形并烧毁,由于该变压器存在以下问题:1)变压器绕组松散。高压绕组辐向用手可摇动5mm左右。从理论分析可知,短路电流产生的电动力可分为辐向力和轴向力。外侧高压绕组受的辐向电磁力,从内层至外层三线性递减,最内层受的辐向电磁力最大,两倍于绕组所受的平均圆周力。当绕组卷紧芝内层导线受力后将一部分力转移到外层,结果造成内层导线应力趋向减小,而外层导绞受力增大,内应力关系使导线上的作用力趋于均衡。内侧中压绕组受力方向相反,但均§七用的原理和要求一致。绕组如果松散,就起不到均衡作用,从而降低了变压器的抗短路充击的能力。外侧高压绕组所受的辐向电动力是使绕组导线沿径向向外胀大,受到的是拉张力,表观为向外撑开;内侧中压绕组所受的辐向电动力是使绕组导线沿径向向内压缩,受到的是压力,表现为向内挤压。这与该变压器的B、C相高、中压绕组在事故中的结果一致。2)经吊罩检查发现该变压器撑条不齐且有移位、垫块有松动位移。这样大大降低了内侧中压绕组承受辐向力和轴向力的能力,使绕组稳定性降低。从事故中的C相中压绕组辐向失稳向内弯曲的情况,可以考虑适当增加撑条数目,以减小导线所受辐向弯曲应力。3)绝缘结构的强度不高。由于该变压器中、低压绕组采用的是围板结构,而围板本身较软,经真空于燥收缩后,高、中、低绕组之间呈空松的格局,为了提高承受短路的能力,宜在内侧绕组选用硬纸筒绝缘结构。(3)措施。这是一起典型的因变压器动稳定性能差而造成的变压器绕组损坏事故,应吸取的教训和相应措施包括:1)在设计上应进一步寻求更合理的机械强度动态计算方式;适当放宽设计安全裕度;内绕组的内衬,采用硬纸筒绝缘结构;合理安排分接位置,尽量减小安匝不平衡。2)制造工艺上可从加强辐向和轴向强度两方面进行,措施主要有:采用女式绕线机绕制绕组,采用先进自动拉紧装置卷紧绕组;牢固撑紧绕组与铁心之间的定位,采用整产套装方式;采用垫块预密化处理、绕组恒压干燥方式;绕组整体保证高度一致和结构完整;强化绕组端部绝缘;保证铁轭及夹件紧固。3)要加强对大中型变压器的质量监制管理,在订货协议中应强调对中、小容量的变压器在型式试验中作突发短路试验,大型变压器要作缩小模型试验,提高变压器的抗短路能力,同时加强变电站10kV及35kV系统维护,减少变压器遭受出口短路冲击机率。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功