1小数除法教学设计一、提出问题。1、谈话导入:最近我们一直在学习有关小数的计算问题。下面进行几轮计算比赛。第一轮:看谁算得对。10×1.30.32×10024+.243.2×0.615-0.151.9×0.020.4×0.51.25×82.5×40.24×4200×0.160.6×0.1第二轮:看谁算得巧。25×73×432×10376×8+2×76让学生说说是怎么算的,运用了哪些运算律。教师小结:在整数乘法中,我们运用乘法的一些运算律,可以使计算简便。2、提出问题:整数乘法中的运算律,对小数乘法是否适用呢?学生猜想。(设计意图:小数乘法和加减法的口算,是进行小数简算的重要基础,所以基本技能的训练也是必不可少的。以竞赛的形式进行练习,可以激发学生的兴趣。看谁算得巧的活动可以帮助学生调动起原有的整数乘法运算律的知识经验,并大胆猜想整数乘法中的运算律,对小数乘法是否适用。)二、观察验证。1、教师提出验证要求:同学们的猜想是否成立呢,需要我们举例来验证。出示几组算式,提出要求:先算一算,下面的○里能填上等号吗?0.8×1.3○1.3×0.8(0.9×0.4)×0.5○0.9×(0.5×0.4)(3.2+2.8)×0.6○3.2×0.6+2.8×0.6(1)学生计算,汇报结果,发现每组的两个算式结果相等,可以用等号连接。(2)观察每组的两个算式有什么关系?学生发现:第一组两个算式中,两个小数相乘,交换两个因数的位置,结果相等,符合乘法交换律。第二组的两个算式中都是三个小数相乘,左边先把前两个小数相乘,再乘第三个小数,右边先把后两个小数相乘,再和第一个小数相乘,结果相等,符合乘法结合律。第三组左边是把两个数的和乘一个数,右边是把这两个数分别乘以这个数,再把两个积相加,结果也相等,符合乘法分配律。(3)乘法的这些运算律是否在小数乘法中普遍适用呢,小组合作,再例举几组有这样关系的算式,通过计算来验证一下。(4)交流发现:整数乘法的运算律,对小数乘法也同样适用。(5)揭示课题:今天这节课我们就来研究“乘法运算律的推广和运用”。(设计意图:让学生充分经历观察、举例、再观察、发现的验证的过程,不但使学生经历形成数学知识的过程,,还能使学生感受到数学结论的科学性和严密性,培养学生严谨的认知态度。)2三、实际运用1、谈话:乘法的这些运算律在小数乘法中有什么用呢?2、试一试:下面各题怎样计算比较简便?0.25×0.73×40.32×403(1)学生尝试计算(2)交流计算方法,让学生说说运用了什么运算律。0.25×0.73×40.32×403=0.25×4×0.73.乘法交换律结合律=0.32×(400+3)=1×0.73=0.32×400+0.32×3.乘法分配律=0.73=128+0.96=128.96(3)教师小结:看到算式,首先要观察数据特点,再根据数据和算式特点,合理运用乘法运算律,使计算简便。3、练一练:用简便方法计算。7.6×0.8+0.2×7.60.25×360.85×199(1)学生尝试计算。(2)交流计算方法。让学生说说是怎样运用运算律进行简算的。3、运用乘法交换律,还可以对小数乘法进行验算二、教学思路本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法。理解除数是小数的除法的计算法则的算理是“商不变的性质”和“小数点位置移动引起小数大小变化的规律”,把除数是小数的除法转化成除数是整数的除法后就用“除数是整数的小数除法”计算法则进行计算。3、试做例题,掌握转化方法明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:①.学生试做例题6例题7,并讲出每个例题小数点移位的方法。②.学生试做例8③.引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。(3)要注意小数除法里余数的数值问题。对这一问题可举例说明。如:57.4÷24,要使学生懂得余数是2.2,而不是22。3三、教学重点难点及解决策略教学重点:会笔算除数是整数的小数除法。教学难点:商的小数点为什么要与被除数的小数点对齐?个位不够商1,怎么办?解决策略:通过学生对商的估算,把估算值与精确值对比,知道被除数里有几个除数,商的整数部分就商几,商的整数部分的右下角点上小数点,余数的后面补0继续除;个位不够商1,就要在商的个位上写0,在0的右下角点上小数点继续往下除。突破重难点的关键点:理解商的小数点要与被除数的小数点对齐的道理。教学过程(一)复习导入1.要使下列各小数变成整数,必须分别把它们扩大多少倍?小数点怎样移动?1.20.670.7250.0032.把下面的数分别扩大10倍、100倍、1000倍是多少?1.342,15,0.5,2.07。3.填写下表。根据上表,说说被除数、除数和商之间有什么变化规律。(被除数和除数同时扩大或缩小相同的倍数,商不变。)根据商不变的性质填空,并说明理由。(1)5628÷28=201;(2)56280÷280=();(3)562800÷()=201;(4)562.8÷2.8=()。(重点强调(4)的理由。(4)式与(1)式比较,被除数、除数都缩小了10倍,所以商不变,还是201,即562.8÷2.8=5628÷28=201)(该环节的设计意图是通过学生的讲与练,理解其转化原理是:当除数由小数变成整数时,除数扩大10倍、100倍、1000倍……被除数也应扩大同样的倍数。)(二)探究算理归纳法则1.学习例6:一根钢筋长3.6米,如果把它截成0.4米长的小段。可以截几段?(1)学生审题列式:3.6÷0.4。(2)揭示课题:这个算式与我们以前学习的除法有什么不同?(除数由整数变成了小数。)今天我们一起来研究“一个数除以小数”。(板书课题:一个数除以小数。)(3)探究算理。①思考:我们学习了除数是整数的小数除法,现在除数是小数该怎样计算呢?4(把除数转化成整数。)怎样把除数转化成整数呢?②学生试做:板演学生做的结果,并由学生讲解:解法1:把单位名称“米”转换成厘米来计算。3.6米÷0.4米=36厘米÷4厘米=9(段)。解法2:答:可以截成9段。讲算理:(为什么把被除数、除数分别扩大10倍?)把除数0.4转化成整数4,扩大了10倍。根据商不变的性质,要使商不变,被除数3.6也应扩大10倍是36。小结:这道题我们可以通过哪些方法把除数转化成整数?(①改写单位名称;②利用商不变的性质。)(3)练习:完成例7思考:你用哪种方法转化?为什么?同桌互相说说转化的方法及道理。独立计算后,订正。例7里的余数15表示多少?强调:利用商不变的性质,把被除数和除数同时扩大多少倍,由哪个数的小数位数决定?(由除数的小数位数决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如0.756÷0.18=75.6÷18。)(设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)2.学习例8:买0.75千克油用3.3元。每千克油的价格是多少元?学生列式:3.3÷0.75。(1)要把除数0.75变成整数,怎样转化?(把除数0.75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)(2)被除数3.3扩大100.倍是多少?(3.3扩大100.倍是330,小数部分位数不够在末尾补“0”。)(3)学生试做:(4)比较例6、7与例8有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)(5)练习:课本P49练一练第三题学生独立完成后,归纳小结。(设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题,启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。让学生在充分积累经验的基础上归纳出除数是小数的除法的计算法则,会收到水道渠成的效果)(三)展开练习深化认识1、(1)不计算,把下面各式改写成除数是整数的算式。(2)下面各式错在哪里,应怎样改正?2.根据10.44÷0.725=14.4,填空:(1)104.4÷7.25=();(2)1044÷()=14.4;5(3)()÷0.0725=14.4;(4)10.44÷7.25=();(5)1.044÷0.725=();(6)1.044÷7.25=()。3.(3)选出与各组中商相等的算式。A.4.83÷0.7B.0.225÷0.15483÷70.483÷748.3÷7225÷152.25÷1522.5÷154.口算:1.2÷0.3=0.24÷0.08=0.15÷0.01=2.8÷4=2.6÷0.2=4.6÷4.6=3.8÷0.19=2.5÷0.05=(设计意图:旨在通过各种形式的练习提高学生学习兴趣,巩固法则,强化重点,突破难点)(四)回顾总结思考:除数是小数的除法应怎样计算?讨论得出(填空):除数是小数的除法的计算法则是:除数是小数的除法,先移动()的小数点,使它变成();除数的小数点向右移动几位,被除数的小数点也()移动()(位数不够的,在被除数的()用“0”补足);然后按照除数是()的小数除法进行计算。看书P46--49,划出重点词语。