北京化工大学化工原理实验告::::::实验名称班级姓名学号同组成员实验日期精馏实验2015.5.13实验日期精馏实验一、实验目的1、熟悉填料塔的构造与操作;2、熟悉精馏的工艺流程,掌握精馏实验的操作方法;3、了解板式精馏塔的结构,观察塔板上汽液接触状况;4、掌握液相体积总传质系数Kxa的测定方法并分析影响因素5、测定全回流时的全塔效率及单板效率;6、测量部分回流时的全塔效率和单板效率二、实验原理在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作条件等。由于影响塔板效率的因素相当复杂,目前塔板效率仍以实验测定给出。板效率是体现塔板性能及操作状况的主要参数,有两种定义方法。(1)总板效率EeNEN式中:E——总板效率;N——理论板数(不包括塔釜);eN——实际板数(2)单板效率mlE1*1nnmlnnxxExx式中:mlE——以液相浓度表示的单板效率;nx,1nx——第n块板和第n-1块板的液相浓度;*nx——与第n块板气相浓度相平衡的液相浓度。总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要参数。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。实验所选用的体系是乙醇—正丙醇,这两种物质的折射率存在差异,且其混合物的质量分数与折射率有良好的线性关系,通过使用阿贝折光仪来分析料液的折射率,从而得到浓度。若改变塔釜再沸器中电加热器的电压,塔内上升蒸汽量将会改变,同时,塔釜再沸器电热器表面得温度将发生改变,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数与加热量的关系。由牛顿冷却定律,可知QmAt式中Q——加热量,kW;——沸腾给热系数,kW/(m2·K)A——传热面积,m2mt——加热器表面与温度主体温度之差,℃。若加热器的壁面温度为ts,塔釜内液体的主体温度为tw,则上式可改写为QswAtt由于塔釜再沸器为直接电加热,则其加热量Q为2UQR式中:U——电加热器的加热电压,V;R——电加热器的电阻,Ω(3)根据进料热状态参数作q线,q线方程:11fxqyxqq式中:xf——进料液组成(摩尔分数);q——进料热状态参数。q=psfccCTTrr每千摩尔进料变成饱和蒸汽所需的热量进料的千摩尔汽化潜热式中:pC——定性温度下进料液的平均比热,(kJ•kmol-1•℃-1)Tf——进料温度,℃;sT——进料泡点,℃;rc——进料的千摩尔气化潜热,(kJ/kmol);(4)由塔底残液浓度XW垂线与平衡线的交点,精馏段操作线与q线交点的连线作提馏段操作线。(5)图解法求出理论塔板数。三、实验流程1、实验装置本实验的流程如图所示,主要由精馏塔、回流分配装置及测控系统组成。TI01PI02HIC03TI04TIC05UI06RI07TI08冷却水20142357891011121314151661718192122精馏实验带控制点工艺流程1、配料罐2、配料罐放空阀3、循环泵4、进料罐5、进料罐放空阀6、进料泵7、进料旁路阀8、进料流量计9、快速进料阀10、进料口位置阀11、玻璃塔节12、塔釜加热器13、塔釜液位计14、塔釜出料阀15、塔釜冷却器16、出料泵17、快速出料阀18、π型液位控制管19、回流比分配器20、塔顶冷凝器21、塔顶放空阀22、冷却水流量计2、设备参数(1)精馏塔精馏塔为筛板塔,全塔共8块塔板,塔身的结构尺寸为:塔径φ(57×3.5)mm,塔板间距80mm:溢流管截面积78.5mm2,溢流堰高12mm,底隙高度6mm;每块塔板开有43个直径为1.5mm的小孔,正三角形排列,孔间距为6mm。为了便于观察塔板上的汽—液接触情况,塔身设有一节玻璃视盅,在第1~6块塔板上均有液相取样口。蒸馏釜尺寸为φ108mm×4mm×400mm。塔釜装有液位计、电加热器(1.5kW)、控温电加热器(200W)、温度计接口、测压口和取样口,分别用于观察釜内液面高度,加热料液,控制电加热量,测量塔釜温度,测量塔顶与塔釜的压差和塔釜液取样。由于本实验所取试样为塔釜液相物料,故塔釜可视为一块理论板。塔顶冷凝器为一蛇管式换热器,换热面积0.06m2,管外走蒸汽,管内走冷却水。(2)回流分配装置分配装置由回流分配器与控制器组成。控制器由控制仪表和电磁线圈构成。回流分配器由玻璃制成,它由一个入口管、两个出口管及引流棒组成。两个出口管分别用于回流和采出。引流棒为一根φ4mm的玻璃棒,内部装有铁芯,塔顶冷凝器中的冷凝液顺着引流棒流下,在控制器的控制下实现塔顶冷凝器的回流或采出操作。即当控制器电路接通后,电磁线圈将引流棒吸起,操作处于采出状态;当控制器电路断路时,电磁线圈不工作,引流棒自然下垂,操作处于回流状态。此回流分配器既可通过控制器实现手动控制,也可通过计算机实现自动控制。(3)测控系统在本试验中,利用人工智能仪表分别测定塔顶温度、塔釜温度、塔身伴热温度、塔釜加热温度、全塔压降、加热电压、进料温度及回流比等参数,该系统的引入,不仅使实验更为简便、快捷,又可实现计算机在线数据采集与控制。(4)物料浓度分析本实验所选用的体系为乙醇-正丙醇,由于这两种物质的折色率存在差异,且其混合物的质量分数与折色率有良好的线性关系,故可通过阿贝折光仪分析液料的折色率,从而得到浓度。这种测定方法的特点是方便快捷、操作简单,但精度稍低;若要实现高精度的测量,可利用气相色谱进行浓度分析。四、实验操作1、配制原料。将乙醇、正丙醇按体积比1:3放入1罐中,开3泵混匀,送入4罐。2、塔釜进来斗。开6泵和5、9、10阀门,进料占液位计高度4/5左右,关闭6泵和上述阀门。3、全回流操作1)开塔顶放空阀门21,塔釜抽取样品0.5ml,用阿贝折光仪测原始组成nd;2)按塔釜加热“手动控制”绿色按钮,调加热电压120V,开冷却水2.5L/min;3)使用新针筒取样纯乙醇、正丙醇,测40°C时折光率,确定方程参数a、b;4)发现回流比分配器中有液体回流后,调整到最佳电压(70~110V),稳定10分钟;5)反复推、拉取样器,抽取热样品0.5ml,注意全针筒替换,正确使用折光仪测折光率;4、部分回流操作(全回流稳定10分钟后进行)1)设定回流比为2、3或4并运行,根据泡沫高度等调节至合适的加热电压;2)开塔釜出料阀14,设定塔釜液位控制高度(修改SV值=刻度线时的PV值);3)开进来斗阀10,再开进料泵6,结合旁路阀7调整进料量约40ml/min;4)开进料罐底部阀门,用瓶盖取样测量进料组成nd;5)检查阀门5打开,稳定15分钟,顶、釜及塔板取样分析同上;5、实验结束先关进料泵6,再关进来斗阀10、釜出来斗阀14,然后停塔釜加热、回流比仪表。10分钟后关阀门21,停冷却水,关闭阀门2和5等。注意事项:1)塔釜加热启动后,冷却水一定要接通,约2.5L/min;2)取样后针头不拔出,只拿走针筒,同时放上一个全针筒;3)使用同一台折光仪,样品稳定10s再读数,镜头纸用完要展开,干后继续用;4)取样后多余物料打入配料罐1内,检查阀门2打开;5)部分回流操作时检查关闭快速进料阀门9;6)塔釜液位不要低于液位计高度1/3,以免烧坏加热器;7)实验过程等待系统稳定时,可观察冷模板式塔的各种现象。五、数据处理1.W乙醇=a+b×nd中参数a、b的确定表1、40℃下W乙醇与nd关系表质量分数W乙醇折光率nd11.356501.3805求解方程式1=a1.35650a1.3805bb,可得57.520841.6667ab。2.全回流实验1)精馏塔中各板上的流液的折光率和易挥发组分的含量表2、全回流实验原始数据加热电压(V)原料组成nd折光率(系统稳定后)塔顶温度(℃)塔釜温度(℃)全塔压降(kPa)nd,顶nd,4nd,5nd,釜831.37861.36451.37671.37691.378982.794.40.941.36401.37641.37671.378479.795.10.92塔顶平均温度82.779.781.22t顶℃塔釜平均温度94.495.194.752t釜℃全塔压降0.940.92P0.93k2Pa以塔顶数据为例进行计算:平均折光率,,,1.36451.3640=1.364322dddnnn顶,1顶,2顶乙醇质量分数,57.520841.66671.3643=0.61W=a77dbn顶乙醇摩尔分数0.677146=0.732310.677110.6771+4660WMXWWMM乙醇乙醇正丙醇则可得下表表3、各板上液体的折光率和摩尔分率塔板平均折光率ndW乙醇X乙醇塔顶1.36430.67710.7323第4板1.37660.16460.2044第5板1.37680.15420.1921塔釜1.37870.07710.09822)乙醇—正丙醇平衡关系表4、乙醇—正丙醇平衡数据表(P=101.325kPa)序号液相组成x气相组成y沸点10097.1620.1260.24093.8530.1880.31892.6640.2100.33991.6050.3580.55088.3260.4610.65086.2570.5460.71184.9880.6000.76084.1390.6630.79983.06100.8440.91480.59111178.38由上表数据可得下图y=0.5438x3-1.5291x2+1.9844x+0.0007R²=0.999400.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.91气相组成y液相组成x乙醇-正丙醇相平衡关系3)图解法求理论板数根据表3和表4的数据可得下图0.00.10.20.30.40.50.60.70.80.91.00.00.10.20.30.40.50.60.70.80.91.0相平衡对角线xd线梯级线xw线气相组分y液相组分x全回流梯级图4)全塔效率和单板效率计算由图解法可知,理论塔板数为5块板(包括塔釜),故理论板数N4.613.6因此全塔效率为3.6100%100%45%e8NEN由相平衡关系可得1(1)xyx,故1111yx由乙醇—正丙醇平衡数据可得下表:表5、1/x与1/y关系表a序号液相组成气相组成1/x1/y10.1260.247.9365084.16666720.1880.3185.3191493.14465430.210.3394.7619052.94985340.3580.552.7932961.81818