vehicle-detection-in-traffic-scenes-using-shadows

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

InternalReport98{06VehicleDetectioninTracScenesUsingShadowsbyChristosTzomakasandWernervonSeelenRuhr-UniversitatBochumInstitutfurNeuroinformatik44780BochumIR-INI98{06August1998ISSN0943-2752c1998InstitutfurNeuroinformatik,Ruhr-UniversitatBochum,FRGVehicleDetectioninTracScenesUsingShadowsChristosTzomakasandWernervonSeelenInstitutfurNeuroinformatik,Ruhr-UniversitatBochum,FRGAbstractInthisreportwepresenttherstresultsofaveryecientschemeforvehicledetectionintracscenes.Itisbasedonthedetectionoftheshadowsunderneaththevehicles.Theuseofshadowassignpatternwasrstreportedin[5].Hereinahistogramevaluationofthepavedroadsustainsthespecicationofathresholdvaluefortheshadedareas.Thisthresholdalongwithedgeinformationleadstotheshadowdetection.Incorporatingexternalknowledgefromthe3Dgeometryandapplyingnaturalconstraintstotheclusteredsegmentsweareabletorobustlygenerateinitialobjecthypotheses.1IntroductionFortherealizationofadriverassistancesystemseveralmoduleshavetobeincorporatedatvariouslevels.Forvision-basedapproachesmaintaskslikedetectionandrecognitionofforegoingvehicleshavetobesolved.Thetimeeciencyiscrucialforthesetasks,andthusaconstrainingfactor.Afundamentalroleinthewholesystemplaystheinitialsegmentationwhichfeedslaterprocesseslikeobjectclassicationandobjecttrackingwithinput.Asinitialsegmentationisconcernedtheextractionofsomedistinctregionsoftheimagewherethefurtherattentionhastobefocused.Ithastooperateonashort-termscaleandtosupplythesystemwithinformationaboutthecurrentsituation.Thebetterandmoreaccuratetheinitialguesses,thebetterforthegoodnessandtheeciencyoftherecognitionprocess.In[3]wehavealreadyproposedamethodforgeneratingobjecthypothesesinhighwayscenes.Themethodisbasedontextureanalysisandmoreparticularlyonimageentropy[4]andusageofthecamerageometry.Likealltexturebasedmethodsthecalculationoftheimageentropyisatime-demandingprocess.Furthermoreaseparateprocessingoffar-andnear-rangesisrequired.In[7]wehavealsoexaminedamodel-basedapproachforvehiclerecognition,whichappliesonlyfortherecognitionofacertaintypeofvehicleatatime.Dierentcategoriesofvehiclesrequiretheuseofseparatemodels.Inthisreportwesystematicallyexamineanotherfeatureusefulforvehicledetection,namelytheshadow.Indeed,theshadowunderneathvehiclesisanattributecommonforalltypesof4-wheeledvehiclesandthusitcanbeusedfortheirdetection.Weproposeamethodforextractingtheshadedsegmentsfromanimageandcombiningthemintoclusterswhichwillserveasinitialobjecthypothesesthatwillbeveriedbylater,moresophisticatedprocesses.Theapproachprovesrobustnessinvariousweatherandlightconditionsandisecientenoughforreal-timepurposes.2DetectingShadowsIn[5]itisinitiallyshownthatshadowcanbeusedasasignpatternforthedetectionofvehicles.Theauthorshaveinvestigatedtheintensityoftheareaunderneathavehicleandfoundoutthatitisdistinctlydarkerthananystainofasphaltpavedroad.In[1]wendarstattemptthatmakesuseoftheideaofMori.Thomaneketalused30windowsscanningforhorizontaledgeelementsandappliedsomebrightness-andcorrelation-value-constraintsforthedetectionofshadowsbeneathemail:Christos.Tzomakas@neuroinformatik.ruhr-uni-bochum.de12IR-INI98{06,c1998InstitutfurNeuroinformatik,Ruhr-UniversitatBochum,FRGvehicles.Neverthelesstheyneithergiveanyfurtherspecicationoftheseconstraints,nordotheydeterminehowonecanchoosethethresholdvaluefortheshadow.Theproblemisthattheintensityoftheshadowunderneathavehicledependsontheilluminationoftheimage,whichinturndependsonthedaylightandthusisnotconstant.Forthisreasonwecannotuseaxedthresholdforsegmentingtheshadedareasintheimage.Furthermore,thetaskofseparatingthedarkareasinanimagefromthebrightonesisnottrivialatall.Darkorlightdarkobjectsmaybepresentintheimagewhichmakesthedetectionofavalleyinthehistogram(whichwouldseparatetheshadowsfromthebrightersurround)fromverydicultuptoimpossible.Wedepicttheideaandtheproblemofchoosingathresholdintracsceneswiththesampleimagesing.1.Fromlefttoright:theimageandsuccessivesegmentationswithdierentthresholds.Weseethatwhileintherstimageathresholdvalueof50wouldbeadequate,inthesecondonetheshadowsdissapearmuchearlier.Figure1:Thresholdedimageswiththresholdvaluest=80,t=50(left)andt=80,t=60(right)Itisobviousthatthereisnolowerboundfortheshadowunderneathavehicle.Butwecandeneanupperlimitfortheintensityoftheshadowinordertoseparateitfromitssurround.Inthenextpartweshowhowwecandenesuchanupperboundsystematically.2.1AnUpperBoundfortheShadowAsalreadymentioneditisnoteasytodetermineanexactthresholdforanimagewhichoptimallyseparatestheshadows.Butwecandetermineanupperboundfortheirgrayvalueswhichcomesfromtheanalysisofthegrayvaluesoftheroad.Theideaisthatshadowsunderneathvehiclesarealwaysdarkerthananystainoftheroad([5]).Thusifwehavearoughestimateofthegrayleveloftheroadwecanexpectthattheshadowswillbebelowthislevel.In[6]colorinformationisusedtosegmenttheroad.In[4]theuseofentropyisproposedforthedeterminationoffreedrivingspace.Weusedanalternativesolutionthatgivesaroughapproxima-tionoffreedrivingspacebydeningthelowestcentralhomogenousregionintheimagedelimitedbyedges.Theupperboundof

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功