相似与位似练习题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、选择题1.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.2.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3B.6C.9D.12考点:位似变换.分析:利用位似图形的面积比等于位似比的平方,进而得出答案.解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.3.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2考点:平行四边形的性质;相似三角形的判定与性质.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.4.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.考点:相似三角形的判定与性质分析:根据已知条件得出△ADC∽△BDE,然后依据对应边成比例即可求得.解答:解:∵∠C=∠E,∠ADC=∠BDE,△ADC∽△BDE,∴=,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴=,∴DC=,故应选A.点评:本题考查了相似三角形的判定和性质:对应角相等的三角形是相似三角形,相似三角形对应边成比例.5.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3)B.(4,3)C.(3,1)D.(4,1)考点:位似变换;坐标与图形性质分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解答:解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的坐标为:(3,3).故选:A.点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.6.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.2:1C.1:4D.4:1考点:相似三角形的性质分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解答:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.7.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第2题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解答:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个分析:分别利用相似三角形的判定和全等三角形的判定定理进行判断即可得到正确的选项.解:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,能用SAS定理判定△ABC≌△A1B1C1,正确;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,不能判定△ABC≌△A1B1C1,错误;(3)若∠A=∠A1,∠C=∠C1,能判定△ABC∽△A1B1C1,正确;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC∽△A1B1C1,正确.故选B.点评:本题考查了命题与定理的知识,解题的关键是掌握三角形全等和相似的判定方法.二.填空题1.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:△ABP∽△AED.考点:相似三角形的判定;平行四边形的性质专题:开放型.分析:可利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似判断△ABP∽△AED.解答:解:∵BP∥DF,∴△ABP∽△AED.故答案为△ABP∽△AED.点评:本题考查了相似三角形的判定与性质:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;2.如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是cm考点:折叠、勾股定理、三角形相似.分析:根据折叠性质可得90FEG,先由勾股定理求出AF、EF的长度,再根据AFE∽BEG可求出EG、BG的长度.解答:解:根据折叠性质可得90FEG,设,AFx则第14题图QHGFEDCBAxEF6,在Rt△AEF中,222EFAEAF,即222)6(3xx,解得:49x,所以415,49EFAF根据AFE∽BEG,可得EGEFBGAEBEAF,即EGBG3341549,所以5,4EGBG,所以△EBG的周长为3+4+5=12。故填12点评:本题考查了折叠的性质,勾股定理的运用及三角形相似问题..3.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为y=(x>0).(第1题图)考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.分析:连接AE,DE,根据同弧所对的圆周角等于圆心角的一半,求得∠AED=120°,然后求得△ABE∽△ECD.根据相似三角形的对应边对应成比例即可表示出x与y的关系,从而不难求解.解答:解:连接AE,DE,∵∠AOD=120°,∴为240°,∴∠AED=120°,∵△BCE为等边三角形,[来源:Zxxk.Com]∴∠BEC=60°;∴∠AEB+∠CED=60°;又∵∠EAB+∠AEB=60°,∴∠EAB=∠CED,∵∠ABE=∠ECD=120°;∴=,即=,∴y=(x>0).点评:此题主要考查学生圆周角定理以及对相似三角形的判定与性质及反比例函数的实际运用能力.4.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=.考点:相似三角形的判定与性质[来源:学#科#网]分析:根据相似三角形的判定与性质,可得答案.解答:解:∵DE∥BC,∴△ADE∽△ABC.∵S△ADE=S四边形BCDE,∴,∵,故答案为:.点评:本题考查了相似三角形的判定与性质,平行于三角形一边截三角形另外两边所得的三角形与原三角形相似,相似三角形面积的比等于相似比.三.解答题1.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.考点:作图—相似变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相似图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相似变换和平移变换,得出变换后图形对应点位置是解题关键.2.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.3.如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功