第三章概率3.1随机事件的概率3.1.1随机事件的概率ks5u精品课件概率论的产生和发展概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论问题的源泉。传说早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒约定谁先赢满5局,谁就获得全部赌金。赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了。那么,这个钱应该怎么分才理?帕斯卡是17世纪著名的数学家但这个问题却让他苦苦思索了三年,三年后也就是1657年,荷兰著名的数学家惠更斯企图自己解决这一问题,结果写成了《论赌博中的计算》一书,这就是概率论最早的一部著作。近几十年来,随着科技的蓬勃发展概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。问题提出1.日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?明天第一节课上课时间是八点、等这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校?明天中午11:50有多少人在食堂用餐?你购买的本期福利彩票是否能中奖?等这些问题的结果都具有偶然性和不确定性.2.从辨证的观点看问题,事情发生的偶然性与必然性之间往往存在有某种内在联系.例如,北京地区一年四季的变化有着确定的、必然的规律,但北京地区一年里哪一天最热,哪一天最冷,哪一天降雨量最大,哪一天下第一场雪等,都是不确定的、偶然的.3.数学理论的建立,往往来自于解决实际问题的需要.对于事情发生的必然性与偶然性,及偶然性事情发生的可能性有多大,我们将从数学的角度进行分析与探究.知识探究(一):必然事件、不可能事件和随机事件思考1:考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点?思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗?思考3:你能列举一些必然事件的实例吗?思考4:考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点?在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.思考5:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗?在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件思考6:你能列举一些不可能事件的实例吗?思考7:考察下列事件:(1)某人射击一次命中目标;(2)马林能夺取伦敦奥运会男子乒乓球单打冠军;(3)抛掷一个骰字出现的点数为偶数.这些事件就其发生与否有什么共同特点?思考8:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗?在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.思考9:你能列举一些随机事件的实例吗?思考10:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A在这个条件下是确定事件,在另一条件下是随机事件?你能举例说明吗?物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映.知识探究二):事件A发生的频率与概率思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为事件A出现的频数,那么事件A出现的频率fn(A)等于什么?频率的取值范围是什么?()[0,1]AnnfAn=?思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少?抛掷次数正面向上次数频率20484040120002400030000720881061204860191201214984361240.51810.50690.50160.50050.49960.5011ks5u精品课件随机事件及其概率某批乒乓球产品质量检查结果表:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,在它附近摆动。nm0.9510.9540.940.970.920.9优等品频率200010005002001005019029544701949245优等品数nmnm抽取球数很多常数思考3:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,结果如下表所示:在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少?每批粒数251070130310700150020003000发芽的粒数24960116282639133918062715发芽的频率10.80.90.8570.8920.9100.9130.8930.9030.9050.9思考4:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何体现出来的?事件A发生的频率较稳定,在某个常数附近摆动.思考5:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少?在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少?思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?通过大量重复试验得到事件A发生的频率的稳定值,即概率.思考7:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等?事件A在先后两次试验中发生的概率P(A)是否一定相等?频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.思考8:必然事件、不可能事件发生的概率分别为多少?概率的取值范围是什么?思考9:概率为1的事件是否一定发生?概率为0的事件是否一定不发生?思考10:怎样理解“9月10号某地区的降水概率为0.6”的含义?ks5u精品课件由定义可知:(1)求一个事件的概率的基本方法是通过大量的重复试验;(3)概率是频率的稳定值,而频率是概率的近似值;(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为1,不可能事件的概率为0.因此.10AP(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件的概率;A理论迁移例1判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)如果a>b,那么a一b>0;(2)在标准大气压下且温度低于0°C时,冰融化;(3)从分别标有数字l,2,3,4,5的5张标签中任取一张,得到4号签;(4)某电话机在1分钟内收到2次呼叫;〈5)手电筒的的电池没电,灯泡发亮;(6)随机选取一个实数x,得|x|≥0.例2某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?射击次数n102050100200500击中靶心次数m8194492178455击中靶心的频率mn0.80.950.880.920.890.910.90小结作业1.概率是频率的稳定值,根据随机事件发生的频率只能得到概率的估计值.2.随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大;反之,概率越接近于0,事件A发生的可能性就越小.因此,概率就是用来度量某事件发生的可能性大小的量.3.任何事件的概率是0~1之间的一个确定的数,小概率(接近0)事件很少发生,大概率(接近1)事件则经常发生,知道随机事件的概率的大小有利于我们作出正确的决策.