二维高斯滤波器图像滤波MTATLAB程序设计用MATLAB设计一个3×3模板标准差为0.5,1.5,2.5的二维高斯低通滤波器(Gaussionlowpassfilter分别对灰度图像,真彩色图像,伪彩色图像进行滤波处理%二维高斯低通滤波器%文件为glpf.mfunctionglpf(J)%处理索引图像ifisind(J)[I,map]=imread(J);I=imnoise(I,'gaussian',0.005);subplot(2,2,1)imshow(I,map);title('a.原始图像');K1=filter2(fspecial('gaussian',3*3,0.5),I);K2=filter2(fspecial('gaussian',3*3,1.5),I);K3=filter2(fspecial('gaussian',3*3,2.5),I);subplot(2,2,2)imshow(K1,map);title('b.滤波器3*3,sigma=0.5')subplot(2,2,3)imshow(K2,map);title('c.滤波器3*3,sigma=1.5')subplot(2,2,4)imshow(K3,map);title('d.滤波器3*3,sigma=2.5')end%处理灰度,真彩色图像if~isind(J)J=imread(J);%读入图像I=imnoise(J,'gaussian');%加入高斯噪声%输出原始图像subplot(2,2,1)imshow(I);title('a.原始图像')h1=fspecial('gaussian',[3,3],0.5);%用预定义的gaussian函数[mnp]=size(I);%[mnp]m,n代表像素点的位置,p代表空间分量%p=1,代表亮度分量,即灰度图像%p=3,代表亮度分量(Y),色差分量(Cr,Cb)ifp==1%处理灰度图像I=double(I);I=conv2(I,h1,'same');%I与h的二维离散卷积endifp==3%处理真彩色I=double(I);I(:,:,1)=conv2(I(:,:,1),h1,'same');I(:,:,2)=conv2(I(:,:,2),h1,'same');I(:,:,3)=conv2(I(:,:,3),h1,'same');endI=uint8(I);%8位无符号整型%经过3*3,sigma=0.5二维高斯低通滤波器滤波后的图像subplot(2,2,2)imshow(I);title('b.滤波器3*3,sigma=0.5')h2=fspecial('gaussian',[3,3],1.5);[mnp]=size(I);ifp==1I=double(I);I=conv2(I,h2,'same');%二维离散卷积endifp==3I=double(I);I(:,:,1)=conv2(I(:,:,1),h2,'same');I(:,:,2)=conv2(I(:,:,2),h2,'same');I(:,:,3)=conv2(I(:,:,3),h2,'same');endI=uint8(I);%经过3*3,sigma=1.5二维高斯低通滤波器滤波后的图像subplot(2,2,3)imshow(I);title('c.滤波器3*3,sigma=1.5')h3=fspecial('gaussian',[3,3],2.5);[mnp]=size(I);ifp==1I=double(I);I=conv2(I,h3,'same');endifp==3I=double(I);I(:,:,1)=conv2(I(:,:,1),h3,'same');I(:,:,2)=conv2(I(:,:,2),h3,'same');I(:,:,3)=conv2(I(:,:,3),h3,'same');endI=uint8(I);%经过3*3,sigma=2.5二维高斯低通滤波器滤波后的图像subplot(2,2,4)imshow(I);title('d.滤波器3*3,sigma=2.5')end程序调用%glpfUse.m%调用functionglpf()处理灰度,真彩色,索引(伪彩色)图像并绘图glpf('填写你需要处理图像的路径')%灰度图像glpf('填写你需要处理图像的路径')%真彩色图像glpf('填写你需要处理图像的路径')%索引(伪彩色)图像本程序适用于数字图像处理多媒体课程设计