1【醒目】北邮2010年光院复试《光纤通信》专业课笔试题!!!一、填空题(共26分,每空2分)1、光纤传输特性:___,___,___。2、单模光纤三种色散:___,___,___;其中___色散导致单模光纤出现传输极限。(原话实在忘了,课本也没在手里,意思表达不清楚,凑合看吧,看过书的人应该明白的,嘿嘿)3、光纤通信系统的三大性能指标:___,___,___。4、给出L、Pi、Po=0,计算α损耗系数___.5、(还有一个题想不起来了,总之填空应该拿满分的)二、选择题(共24分,每题4分)1、影响DWDM传输容量的因素有:(五个选项,不定项选择,具体选项忘了~)2、EDFA能放大那些波长的光:(选项略)3、光检测器,给出截止波长hvEg,问能检测出那些波长的光。4、单模光纤当波长大于lanmdaC(你懂的,这个希腊字母实在是找不到在哪)时截止,问那些波长的光能通过?5、适合DwDm传输的标准?(答案应该是G.655)6、光接收机的性能指标。三、大题(计算+简述,共50分)计算题:1、(5分)回波损耗,知Po,反射Pi,求α?2、(10分)画出WDM系统并阐述工作原理(感觉这不是计算题,下题同)3、(10分)EDfA的三种泵浦结构并作简单说明。简述题:1、(10分)光纤传输特性对于光脉冲的影响。2、(10分)光与物质的三种反应过程并写出与之相对应的半导体器件。(写到这忍不住抱怨句:这也忒简单了吧,考填空正好~)3、(5分)WDM中监控信道的作用及对波长的选择。激光二极管参数与原理及应用2011-06-1917:10:29来源:互联网一、激光的产生机理在讲激光产生机理之前,先讲一下受激辐射。在光辐射中存在三种辐射过程,一时处于高能态的粒子在外来光的激发下向低能态跃迁,称之为自发辐射;二是处于高能态的粒子在外来光的激发下向低能态跃迁,称之为受激辐射;三是处于低能态的粒子吸收外来光的能量向高能态跃迁称之为受激吸收。自发辐射,即使是两个同时从某一高能态向低能态跃迁的粒子,它们发出光的相位、偏振状态、发射方向也可能不同,但受激辐射就不同,当位于高能态的粒子在外来光子的激发下向低能态跃迁,发出在频率、相位、偏振状态等方面与外来光子完全相同的光。在激光器中,发生的辐射就是受激辐射,它发出的激光在频率、相位、偏振状态等方面完全一样。任2何的受激发光系统,即有受激辐射,也有受激吸收,只有受激辐射占优势,才能把外来光放大而发出激光。而一般光源中都是受激吸收占优势,只有粒子的平衡态被打破,使高能态的粒子数大于低能态的粒子数(这样情况称为离子数反转),才能发出激光。产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生光的受激发射的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带。为了获得离子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了离子数反转—在高费米能级EFC以下导带中贮存着电子,而在低费米能级EFV以上的价带中贮存着空穴。实现粒子数反转是产生激光的必要条件,但不是充分条件。要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,激活物质所发出的受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件:P1P2exp(2G-2A)≥1(P1、P2是两个反射镜的反射率,G是激活介质的增益系数,A是介质的损耗系数,exp为常数),才能输出稳定的激光,另一方面,激光在谐振腔内来回反射,只有这些光束两两之间在输出端的相位差Δф=2qπq=1、2、3、4。。。。时,才能在输出端产生加强干涉,输出稳定激光。设谐振腔的长度为L,激活介质的折射率为N,则Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ,上式可化为f=qc/2NL该式称为谐振条件,它表明谐振腔长度L和折射率N确定以后,只有某些特定频率的光才能形成光振荡,输出稳定的激光。这说明谐振腔对输出的激光有一定的选频作用。二、激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。半导体激光二极管的基本结构如图所示,垂直于PN结面的一对平行平面构成法布里——珀罗谐振腔,它们可以是半导体晶体的解理面,也可以是经过抛光的平面。其余两侧面则相对粗糙,用以消除主方向外其它方向的激光作用。半导体中的光发射通常起因于载流子的复合。当半导体的PN结加有正向电压时,会削弱PN结势垒,迫使电子从N区经PN结注入P区,空穴从P区经过PN结注入N区,这些注入PN结附近的非平衡电子和空穴将会发生复合,从而发射出波长为λ的光子,其公式如下:λ=hc/Eg(1)式中:h—普朗克常数;c—光速;Eg—半导体的禁带宽度。上述由于电子与空穴的自发复合而发光的现象称为自发辐射。当自发辐射所产生的光子通过半导体时,一旦经过已发射的电子—空穴对附近,就能激励二者复合,产生新光子,这种光子诱使已激发的载流子复合而发出新光子现象称为受激辐射。如果注入电流足够大,则会形成和热平衡状态相反的载流子分布,即粒子数反转。当有源层内的载流子在大量反转情况下,少量自发辐射产生的光子由于谐振腔两端面往复反射而产生感应辐射,造成选频谐振正反馈,或者说对某一频率具有增益。当增益大于吸收损耗时,就可从PN结发出具有良好谱线的相干光——激光,这就是激光二极管的简单原理。随着技术和工艺的发展,目前实际使用的半导体激光二极管具有复杂的多层结构。3常用的激光二极管有两种:①PIN光电二极管。它在收到光功率产生光电流时,会带来量子噪声。②雪崩光电二极管。它能够提供内部放大,比PIN光电二极管的传输距离远,但量子噪声更大。为了获得良好的信噪比,光检测器件后面须连接低噪声预放大器和主放大器。半导体激光二极管的工作原理,理论上与气体激光器相同。激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。半导体激光二极管的常用参数有:(1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm等。(2)阈值电流Ith:即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。(3)工作电流Iop:即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。光学谐振腔opticalresonantcavity光波在其中来回反射从而提供光能反馈的空腔。激光器的必要组成部分,通常由两块与工作介质轴线垂直的平面或凹球面反射镜构成。工作介质实现了粒子数反转后就能产生光放大。谐振腔的作用是选择频率一定、方向一致的光作最优先的放大,而把其他频率和方向的光加以抑制。如图,凡不沿谐振腔轴线运动的光子均很快逸出腔外,与工作介质不再接触。沿轴线运动的光子将在腔内继续前进,并经两反射镜的反射不断往返运行产生振荡,运行时不断与受激粒子相遇而产生受激辐射,沿轴线运行的光子将不断增殖,在腔内形成传播方向一致、频率和相位相同的强光束,这就是激光。为把激光引出腔外,可把一面反射镜做成部分透射的,透射部分成为可利用的激光,反射部分留在腔内继续增殖光子。光学谐振腔的作用有:①提供反馈能量,②选择光波的方向和频率。谐振腔内可能存在的频率和方向称为本征模,按频率区分的称纵模,按方向区分的称横模。两反射镜的曲率半径和间距(腔长)决定了谐振腔对本征模的限制情况。不同类型的谐振腔有不同的模式结构和限模特性。4计算机网络许多功能在多个层次重复,有冗余感(如流控,差错控制等)各层功能分配不均匀(链路、网络层任务中,会话层任务轻)功能和服务定义复杂,很难产品化OSI模型的缺陷:1、OSI模型及其相关的服务定义和协议都及其复杂。在七层结构中,其中会话层和表示层基本上没有使用价值;而数据链路层和网络层功能烦杂,从而分成几个不通功能的子层。显得结构臃肿。因此最初的实现又大又笨拙并且很慢。2、某些功能重复出现。例如寻址、流量控制和出错控制在各层重复出现。导致效率降低,系统功能下降。3、某些特性无法找到与之对应的特定层。比如虚拟终端处理原先在表示层,现在放到应用层;数据安全、加密问题和网络管理无法决定放在哪一层,从而被放置一边。4、模型的制定主持者是通信方面的,由于通信与计算机和软件的工作方式不同,导致某些决定无法在互联网上使用。