1[1].3_线段的垂直平分线(1)性质定理与判定定理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3.线段的垂直平分线(1)性质定理与判定定理线段的垂直平分线我们曾经利用折纸的方法得到:线段垂直平分线上的点到这条线段两个端点距离相等.你能证明这一结论吗?回顾思考已知:如图,AC=BC,MN⊥AB,P是MN上任意一点.求证:PA=PB.ACBPMN分析:(1)要证明PA=PB,而△APC≌△BPC的条件由已知故结论可证.老师期望:你能写出规范的证明过程.AC=BC,MN⊥AB,可推知其能满足公理(SAS).就需要证明PA,PB所在的△APC≌△BPC,几何的三种语言定理线段垂直平分线上的点到这条线段两个端点距离相等.老师提示:这个结论是经常用来证明两条线段相等的根据之一.开启智慧ACBPMN如图,∵AC=BC,MN⊥AB,P是MN上任意一点(已知),∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).进步的标志′驶向胜利的彼岸思考分析你能写出“定理线段垂直平分线上的点到这条线段两个端点距离相等”的逆命题吗?逆命题到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.它是真命题吗?ABP如果是.请你证明它.已知:如图,PA=PB.求证:点P在AB的垂直平分线上.分析:要证明点P在线段AB的垂直平分线上,可以先作出过点P的AB的垂线(或AB的中点,),然后证明另一个结论正确.想一想:若作出∠P的角平分线,结论是否也可以得证?驶向胜利的彼岸逆定理我能行1逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.ACBPMN如图,∵PA=PB(已知),∴点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).老师提示:这个结论是经常用来证明点在直线上(或直线经过某一点)的根据之一.从这个结果出发,你还能联想到什么?驶向胜利的彼岸尺规作图做一做1已知:线段AB,如图.求作:线段AB的垂直平分线.作法:用尺规作线段的垂直平分线.1.分别以点A和B为圆心,以大于AB/2长为半径作弧,两弧交于点C和D.ABCD2.作直线CD.则直线CD就是线段AB的垂直平分线.请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.老师提示:因为直线CD与线段AB的交点就是AB的中点,所以我们也用这种方法作线段的中点.挑战自我随堂练习1驶向胜利的彼岸如图,已知AB是线段CD的垂直平分线,E是AB上的一点,如果EC=7cm,那么ED=cm;如果∠ECD=600,那么∠EDC=0.老师期望:你能说出填空结果的根据.EDABC760梦想成真试一试P2721.已知直线和上一点P,利用尺规作的垂线,使它经过点P.P●l回味无穷定理线段垂直平分线上的点到这条线段两个端点距离相等.如图,∵AC=BC,MN⊥AB,P是MN上任意一点(已知),∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.如图,∵PA=PB(已知),∴点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).小结拓展ACBPMN知识的升华独立作业P9习题1.51,2,3题.祝你成功!习题1.5独立作业1驶向胜利的彼岸1.利用尺规作出三角形三条边的垂直平分线.老师期望:先分别作出不同形状的三角形,再按要求去作图.习题1.5独立作业2驶向胜利的彼岸2.如图,A,B表示两个仓库,要在A,B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建造在什么位置?老师期望:养成用数学解释生活的习惯.A●B●习题1.4独立作业3驶向胜利的彼岸3.如图,在△ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于50,求BC的长.老师期望:做完题目后,一定要“悟”到点东西,纳入到自己的认知结构中去.BAEDC结束寄语•严格性之于数学家,犹如道德之于人.•证明的规范性在于:条理清晰,因果相应,言必有据.这是初学证明者谨记和遵循的原则.下课了!

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功