第1页(共27页)2018年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)给出四个实数,2,0,﹣1,其中负数是()A.B.2C.0D.﹣12.(4分)移动台阶如图所示,它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.6.(4分)若分式的值为0,则x的值是()A.2B.0C.﹣2D.﹣57.(4分)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()第2页(共27页)A.(1,0)B.(,)C.(1,)D.(﹣1,)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.9.(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4B.3C.2D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()第3页(共27页)A.20B.24C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.(5分)一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为.16.(5分)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.第4页(共27页)(2)化简:(m+2)2+4(2﹣m).18.(8分)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(8分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱PAQB.(2)画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经第5页(共27页)过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.22.(10分)如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙xx(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求第6页(共27页)每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED为等腰三角形,求所有满足条件的BD的长.(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC∥BE时,记△OFP的面积为S1,△CFE的面积为S2,请写出的值.第7页(共27页)2018年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)给出四个实数,2,0,﹣1,其中负数是()A.B.2C.0D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.【点评】此题主要考查了实数,正确把握负数的定义是解题关键.2.(4分)移动台阶如图所示,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是三个台阶,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a12【分析】根据同底数幂相乘,底数不变,指数相加进行计算.【解答】解:a6•a2=a8,故选:C.【点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法的计算法则.第8页(共27页)4.(4分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分【分析】将数据重新排列后,根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4分)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是=,故选:D.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(4分)若分式的值为0,则x的值是()A.2B.0C.﹣2D.﹣5【分析】分式的值等于零时,分子等于零.【解答】解:由题意,得x﹣2=0,解得,x=2.经检验,当x=2时,=0.第9页(共27页)故选:A.【点评】本题考查了分式的值为零的条件.注意,分式方程需要验根.7.(4分)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0)B.(,)C.(1,)D.(﹣1,)【分析】根据平移的性质得出平移后坐标的特点,进而解答即可.【解答】解:因为点A与点O对应,点A(﹣1,0),点O(0,0),所以图形向右平移1个单位长度,所以点B的对应点B'的坐标为(0+1,),即(1,),故选:C.【点评】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10,两种客车载客量之和=466.【解答】解:设49座客车x辆,37座客车y辆,根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方第10页(共27页)程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4B.3C.2D.【分析】先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.【解答】解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴点A的坐标为(1,1),点B的坐标为(2,),∵AC∥BD∥y轴,∴点C,D的横坐标分别为1,2,∵点C,D在反比例函数y=(k>0)的图象上,∴点C的坐标为(1,k),点D的坐标为(2,),∴AC=k﹣1,BD=,∴S△OAC=(k﹣1)×1=,S△ABD=•×(2﹣1)=,∵△OAC与△ABD的面积之和为,∴,解得:k=3.故选:B.第11页(共27页)【点评】本题考查了反比例函数系数k的几何意义,解决本题的关键是求出AC,BD的长.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.D.【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程求出x的值,进而可求出该矩形的面积.【解答】解:设小正方形的边长为x,∵a=3,b=4,∴AB=3+4=7,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+4)2=72,整理得,x2+7x﹣12=0,解得x=或x=(舍去),∴该矩形的面积=(+3)(+4)=24,故选:B.【点评】本题考查了勾