浅谈对合情推理与演绎推理的认识及作用推理与证明是人类必不可少的思维过程.推理与证明思想不仅贯穿于高中数学的整个知识体系,在其他学科领域也有多处涉及.物理、化学、生物、地理等许多学科中的伟大猜想及定理的产生都源于合情推理;高中生本身的学习生活阅历中也有很多合情推理的实例.通过本节课学生可以真正的体会到数学与其他学科的交叉性、互补性,初步体会科学的方法论在日常生活的作用.同时,本节课的学习有助于学生更完整更准确地认识到数学不仅仅是演绎科学,更是归纳的科学,类比的科学;有助于学生形成合情推理的思维方式,培养创新精神,为将来合理地提出新思想、新概念、新方法奠定好基础;有助于学生养成良好的科学态度和严谨的学习作风,形成言之有理、论证有据的习惯.人们习惯于把数学看成是演绎科学、研究结构的科学,主要是由于人们习惯上从数学研究的结果来看数学的本质特征.然而,结果并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,一个“思维的实验过程”.波利亚认为:“数学有两个侧面,由欧几里德方法提出来的数学看来像是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学.”本节课的设计就是为了还原数学的本质,让学生意识到数学不仅仅是演绎的科学,更是推理的科学合情推理中的归纳、类比都是具有创造性的或然推理.不论是由大量的实例,经过分析、概括、发现规律的归纳,还是由两系统的已知属性,通过比较、联想而发现未知属性的类比,它们的共同点是,结论往往超出前提所控制的范围,所以它们是“开拓型”或“发散型”的思维方法.也正因为结论超出了前提的管辖范围,前提也就无力保证结论必真,所以归纳类比都是或然性推理.演绎推理所得的结论完全蕴含于前提之中,所以它是“封闭型”或“收敛型”的思维方法.只要前提真实,逻辑形式正确,结论必然是真实的.总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.演绎推理可以验证合情推理的正确性,合情推理可以为演绎推理提供方向和思路.