2.4三角形的中位线第2章四边形导入新课讲授新课当堂练习课堂小结八年级数学下(XJ)教学课件1.理解中位线的概念和性质;(重点)2.能够利用中位线解决相关问题;(重点、难点)学习目标如图,有一块三角形的蛋糕,准备平均分给两个小朋友,要求两人所分的大小相同,请设计合理的解决方案;若平均分给四个小朋友,要求他们所分的大小都相同,请设计合理的解决方案;导入新课情境引入如图,有一块三角形的蛋糕,准备平均分给四个小朋友,要求四人所分的形状和大小都相同,请设计合理的解决方案.讲授新课三角形的中位线及其性质一问题1:你能将任意一个三角形分成四个全等的三角形吗?合作探究问题2:连接每两边的中点,看看得到了什么样的图形?四个全等的三角形连接三角形两边中点的线段叫作三角形的中位线.ABCDE知识要点两层含义:②如果DE为△ABC的中位线,那么D、E分别为AB、AC的.①如果D、E分别为AB、AC的中点,那么DE为△ABC的;中位线中点ABC1.画出△ABC中所有的中位线.2.画出三角形的所有中线并说出中位线和中线的区别.DEF问题3:你能通过剪拼的方式,将一个三角形拼成一个与其面积相等的平行四边形吗?小明的做法:将△ADE绕点E按顺时针方向旋转180°到△CFE的位置(如图),这样就得到了一个与△ABC面积相等的平行四边形DBCF.ADEFCB动画演示猜一猜:三角形两边中点的连线与第三边有怎样的关系?能证明你的猜想吗?ADEFCBDE和边BC的关系数量关系:位置关系:平行DE是BC的一半能说出理由吗?请同学们测量⑴∠ADE,∠ABC度数;⑵DE,BC长度.测量法已知:如图,在△ABC中,DE是△ABC的中位线.求证:DE∥BC,DE=BC.EABCDF12证明:如图,延长DE至F,使EF=DE,连接CF.∵AE=CE,∠AED=∠CEF,∴△ADE≌△CFE∴AD=CF,∠A=∠ECF.∴CF∥AB.证明法∵AD=BD,∴四边形DBCF是平行四边形.∴BD=CF.EABCDF∴DE∥BC,11.22DEDFBC1,.2DEBCDEBC三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.用符号语言表示DABCE∵DE是△ABC的中位线归纳总结∴DE∥BC,1.2DEBC【定理的理解】(1)从条件看,以后我们看到中点,尤其是两个或者两个以上的中点时我们就要联想到三角形的中位线定理.(2)从结论看,它既可以得到线段的位置关系(平行),又可以得到线段的数量关系(倍分关系),大家以后在解决相关问题时要两方面结合起来灵活应用.1.如左图,MN为△ABC的中位线,若∠ABC=61°,则∠AMN=,若MN=12,则BC=.AMBCN61°24练一练ADBCE2.如右图,△ABC中,D,E分别为AB,AC的中点,当BC=10㎝时,则DE=.5㎝ABCEFD1.图中有几个全等三角形,你是怎么知道的?你能证明吗?2.图中有几个平行四边形?你能证明吗?深入探究3.(1)已知:三角形的各边分别为6cm,8cm,12cm,则连接各边中点所成三角形的周长为____cm.13(2)已知:三角形的周长为64cm,则连接各边中点所成三角形的周长为____cm.32(3)△ABC的周长为aD、E、F分别为△ABC各边中点,△DEF的周长为;G、H、I分别为△DEF各边中点,△GHI的周长为;CABDFEGHI像这样下去,第3个三角形的周长为;第n个三角形的周长为.a12a14a18a12n你发现了什么?你还有什么想法?4.(1)如图:D、E、F分别是△ABC三边的中点你能发现△DEF的面积与△ABC的面积有什么关系吗?为什么?●●●ABCDEF(2)已知:△ABC的面积为s,连接各边中点得△A1B1C1,再连接△A1B1C1各边中点得△A2B2C2……,则⑴第1次连接所得△A1B1C1面积=____⑵第2次连接所得△A2B2C2面积=____⑶第3次连接所得△A3B3C3面积=____⑷第n次连接所得△AnBnCn面积=____ACA1B1C1A2B2C2BS14S116S164S14nC3A3B3次数123…n所得三角形周长…所得三角形面积…4a12a18a12a1n64s116s14s1n4s1规律总结3.如图,已知△ABC中,AB=3㎝,BC=3.4㎝,AC=4㎝且D,E,F分别为AC,AB,BC边的中点,则△DEF的周长是㎝.ABCDEF5.2练一练4.如下图:在Rt△ABC中,∠A=90°,D、E、F分别是各边中点,AB=6cm,AC=8cm,则△DEF的周长=______cm.12EFBACD典例精析例1已知:如图,在四边形ABCD中,E,F,G,H分别为各边的中点.求证:四边形EFGH是平行四边形.ABCHDEFG分析:将四边形ABCD分割为三角形,利用三角形的中位线可转化两组对边分别平行或一组对边平行且相等来证明.证明:连接AC.∵E,F,G,H分别为各边的中点,∴EF∥HG,EF=HG.∴EF∥AC,HG∥AC,∴四边形EFGH是平行四边形.ABCHDEFG1.2EFAC1.2HGACABCDEFGH不变化你觉得四边形EFGH的形状和什么有关?变式:若平行四边形ABCD变成任意的四边形,其它条件不变,则四边形EFGH的形状会变化吗?为什么?1.如图:EF是△ABC的中位线,BC=20,则EF=________;BCAFE10当堂练习2.在△ABC中,中线CE、BF相交点O,M、N分别是OB、OC的中点,则EF和MN的关系是_______________.平行且相等NBCAFEOM3.A,B两村相隔一座大山,你能想办法测出A,B两村的直线距离AB的大小吗?若MN=360m,则AB=_____.ABC测出MN的长,就可知A、B两点的距离.MN解析:在AB外选一点C,使C能直接到达A和B,连接AC和BC,并分别找出AC和BC的中点M、N.720m如果,M、N两点之间还有阻隔,你有什么解决办法?两次利用中位线,分别取CM和CN的中点.4.如图,在Rt△ABC中,∠C=90°,D是斜边AB的中点,E是BC的中点.(2)若AB=10,DE=4,求△ABC的面积.(1)DE⊥BC吗?为什么?ABCDE∴DE∥BC,∵∠C=90°,∴DE⊥BC.118624.22ABCSACBC∵DE=4,∴AC=8.∵AB=10,AC=8,∴BC=6.∵D、E分别是AB、BC的中点,你能看懂吗?2345111111444443趣味数学趣味数学课堂小结三角形中位线定义连接三角形两边中点的线段叫做三角形的中位线.性质三角形的中位线平行于第三边,并且等于第三边的一半.三角形的中位线微课