【精品课件】1.5.2汽车行驶的路程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

利用导数我们解决了“已知物体运动路程与时间的关系,求物体运动速度”的问题.反之,如果已知物体的速度与时间的关系,如何求其在一定时间内经过的路程呢?问题:汽车以速度v组匀速直线运动时,经过时间t所行驶的路程为Svt.如果汽车作变速直线运动,在时刻t的速度为22vtt(单位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S(单位:km)是多少?引入分析:与求曲边梯形面积类似,采取“以不变代变”的方法,把求匀变速直线运动的路程问题,化归为匀速直线运动的路程问题.把区间[0,1]分成n个小区间,在每个小区间上,由于()vt的变化很小,可以近似的看作汽车作于速直线运动,从而求得汽车在每个小区间上行驶路程的近似值,在求和得S(单位:km)的近似值,最后让n趋紧于无穷大就得到S(单位:km)的精确值.(思想:用化归为各个小区间上匀速直线运动路程和无限逼近的思想方法求出匀变速直线运动的路程).解:1.分割在时间区间0,1上等间隔地插入1n个点,将区间0,1等分成n个小区间:10,n,12,nn,…,1,1nn记第i个区间为1,(1,2,,)iiinnn,其长度为11iitnnn把汽车在时间段10,n,12,nn,…,1,1nn上行驶的路程分别记作:1S,2S,…,nS显然,1niiSS(2)近似代替当n很大,即t很小时,在区间1,iinn上,可以认为函数22vtt的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点1in处的函数值2112iivnn,从物理意义上看,即使汽车在时间段1,iinn(1,2,,)in上的速度变化很小,不妨认为它近似地以时刻1in处的速度2112iivnn作匀速直线运动即使汽车在时间段即在局部小范围内“以匀速代变速”,于是的用小矩形的面积iS近似的代替iS,则有21112iiiiSSvtnnn2112(1,2,,)iinnnn①(3)求和由①得,21111112nnnniiiiiiSSvtnnnn=221111102nnnnnn=222311212nn=3121126nnnn=11111232nn从而得到S的近似值11111232nSSnn(4)取极限当n趋向于无穷大时,即t趋向于0时,11111232nSnn趋向于S,从而有111limlimnnnniiSSvnn1115lim112323nnn思考:结合求曲边梯形面积的过程,你认为汽车行驶的路程S与由直线0,1,0ttv和曲线22vt所围成的曲边梯形的面积有什么关系?结合上述求解过程可知,汽车行驶的路程limnnSS在数据上等于由直线0,1,0ttv和曲线22vt所围成的曲边梯形的面积.思考一般地,如果物体做变速直线运动,速度函数为vvt,那么我们也可以采用分割、近似代替、求和、取极限的方法,利用“以不变代变”的方法及无限逼近的思想,求出它在a≤t≤b内所作的位移S.结论练习:弹簧在拉伸的过程中,力与伸长量成正比,即力Fxkx(k为常数,x是伸长量),求弹簧从平衡位置拉长b所作的功分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解.练习解:将物体用常力F沿力的方向移动距离x,则所作的功为WFx.(1).分割在区间0,b上等间隔地插入1n个点,将区间0,1等分成n个小区间:0,bn,2,bbnn,…,1,nbbn记第i个区间为1,(1,2,,)ibibinnn,其长度为1ibibbxnnn把在分段0,bn,(2)近似代替有条件知:11'iibibbWFxknnn(1,2,,)in2,bbnn,…,1,nbbn上所作的功分别记作:1W,2W,…,nW(3)求和111'nnniiiibbWWknn=220121kbnn22211122nnkbkbnn从而得到W的近似值2112nkbWWn(4)取极限2211limlim'lim122nninnnikbkb所以得到弹簧从平衡位置拉长b所作的功为:22kb作业课本:P50练习:1,2.

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功