新课标解读数与代数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

新课标解读之“数与代数”领域内容分析与研讨各位老师大家好!今天能够作为小学暑期培训教师代表发言,我感到非常荣幸。我主要负责《义务教育小学数学课程标准》“数与代数”部分的解读。下面我结合自己的教学实践,与大家一起交流。也希望通过交流能够引发大家更多的思考和共鸣。我们都知道,数与代数部分是小学数学课程的重要内容。在小学数学学习中占的比例是最大的,更重要的是这部分学习内容是整个数学学习和学习其他的学科的基础,可以说它是学习数学的主线。“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程等。通过研究分析这部分的内容,可以使我们了解小学阶段数与代数内容的本质与发展,从整体上把握相关概念和数的发展脉络,促使数与代数内容的教学设计和教学目标的实现。下面我围绕以下几个问题和大家交流一下:1、小学数学新课程标准和旧课标比较有何变化?2、数与代数部分的核心概念。3、如何建立“数”的概念?4、如何处理运算教学中的算理与算法的关系?5、如何落实新课标对估算的要求?6、如何依托现实情境帮助学生体现和理解常见的量问题一:小学数学新课程标准和旧课标比较有何变化?《标准》对数与代数这部分内容作了较大地改革:1.重视数与符号意义以及对数的感受,体会数字用来表示和交流的作用。通过探索丰富的问题情景发展运算的含义,在保持基本笔算训练的前提下,强调能够根据题目条件寻求合理、简捷的运算途径和运算方法,加强估算,引进计算器,鼓励算法多样化。2.对于应用问题:选材强调现实性、趣味性和可探索性;题材呈现形式多样化(表格、图形、漫画、对话、文字等);强调对信息材料的选择与判断(信息多余、信息不足……);解决的策略多样化;问题答案可以不唯一;淡化人为编制的应用题类型及其解题分析。3.使学生初步体会数学可以发现、描述、分析客观世界中多种多样的模式,把握事物的变化和事物间的关系;初步发展学生的符号意识,学会用符号表达现实问题中的一些基本关系,会初步进行符号运算。4.体会方程和函数是刻划现实世界,有效地表示、处理、交流和传递信息的强有力工具,是探究事物发展规律,预测事物发展的重要手段,重视对简单现实问题的建模过程,学会选择有效的符号运算程序和方法解决问题,重视近似解法特别是图象解法。我们来看每个学段都有哪些变化:第一学段:①增加“能进行简单的整数四则混合运算(两步)”增加了认识小括号,②使一些目标的表述更加准确。例如将“能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断”,修改为“能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释”。第二学段:①增加的内容:●增加“经历与他人交流各自算法的过程,并能表达自己的想法”。●增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。●增加“在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题”。●增加“结合简单的实际情境,了解等量关系,并能用字母表示”。②调整的内容:●将“理解等式的性质”,改为“了解等式的性质”●将“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,改为“能解简单的方程(如3x+2=5,2x-x=3)”。③使一些目标的表述更加准确和完整。例如将“会用方程表示简单情境中的等量关系”,改为“能用方程表示简单情境中的等量关系,了解方程的作用”。问题二:“数与代数部分的核心概念”解读此次《标准》提出了10个核心概念。这就是:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。把握好这些核心概念无论对于教师教学和学生学习都是极为重要的。数与代数这一部分的重要核心概念包括:数感、符号意识、运算能力、推理能力、模型思想、应用意识和创新意识。下面我主要把数感、符号意识、推理能力、模型思想等四个核心概念与大家一起交流。1、数感:数感就是对数的感悟。是关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。建立“数感”有助于学生理解现实生活中数的意义,理解或表述具体情景中的数量关系。在以前的教学中,总感觉数感是直觉,是潜意识的,我们也感到数感作为课堂教学目标不好把握,找不到它的教学支点。那么如何在教学过程中帮助学生建立数感呢?下面我就结合自己的教学实践,谈谈我的一些观点:数感的培养分成四个步骤:⑴体验生活,建立数感在教学比的意义时。这节内容看似简单,其实要讲透十分困难,这节课的一个重点就是让学生体会比是一种数量关系。比如,甲数和乙数的比是3:2,那么甲是乙的几分之几?这类题目在毕业前总复习阶段常有学生弄错。我觉得可能主要的原因就是在比的概念的形成过程中,没有很完整地让学生经历概念形成的过程,为以后的学习埋下隐患。甲数与乙数的比为3:2,它可以表示至少两种数量关系:甲数是乙数的3/2,乙数是甲数的2/3。老师们看似简单,其实对学生来说是很容易混淆的。我们必须让学生明白知识“从哪里来”“到那里去”,比从哪里来?其实,比就是从生活中来,我们必须让学生充分体验生活中的比所表示的关系,才能让学生真正理解知识,并应用知识。比如刚才的例子换成(课件出示:3杯牛奶和2杯果汁)先让学生用已有的分数知识表示出牛奶与果汁的关系,再引入比来表示牛奶和果汁的关系,从而让学生体会到比能简洁地表示出分数所能表示的两个数量关系,认识到学习比的必要性。并能理解比所表示的这两个数量关系,并很好地感悟比的意义,建立数感。当学生建立数感后,遇到生活中的溶液配制问题就会迎刃而解,比如:米与水的比为:1:2,学生会想到水量是米量的2倍。从而在这些生活实例中体会了数的含义,初步建立了数感。⑵实践操作,增强数感.比如,教学“千克的初步认识”时可安排学生完成以下操作活动A、让学生把大米装在塑料袋里,并称出1千克的大米,让学生掂一掂,初步感受1千克有多重。B、学生分别掂一掂自带的物品(如重500克的袋装盐、重250克的味精)比较,并体会不同重量物品的感觉差异。C、发给每组三个重量不一装有大米的塑料袋(内有一袋重为1千克),让学生分别掂一掂,找出重1千克的袋子,看谁找得准。D、让学生拿出若干的课本和练习本,先掂一掂,并能够增减,估计一下是否有1千克,再用称验证,然后推测出2千克、5千克一共有多少本。在实践操作中体会1克的物体能吹得动,1千克的物体能掂得动,强化了学生的数感。⑶合作学习,交流数感我们知道,数学知识有一个从形象到表象,从表象到抽象,两个过程。而这两个过程,也是两次提升,而在这个提升的过程中,合作交流起到了非常重要的作用。小组合作学习有利于学生人人参与学习全过程,它不仅能发掘个人内在的潜能,还能培养集体合作精神,人人可以尝试成功的喜悦。同学之间的语言最容易理解,数感也能得到进一步加强。比如在《9加几》教学中,在指导学生动手操作体会“凑十法“后,这时学生的思维停留在具体形象的层面,这时学生更多是对活动本身的喜欢,而不是对数学的热爱,若你认为活动经验的积累只停留这个层面,这样的教学很容易流于热闹的形式,根本没有深入到数学的本质。动手、动口、动脑都是活动经验积累的方式,只动手是远远不够的,我们应在这个环节及时组织学生回顾、交流操作过程,让学生通过“在头脑里摆学具”,获得完整的操作过程的表象。并试着让学生把理解的表象的过程通过表现出来,也就是留下我们思考的痕迹。接着,结合算式引导学生利用表象思考9+4可以怎样算,从而使学生明白:为了先凑成十,就把4分成1和3,先算9+1=10,再算10+3=13,并在交流、对话中完成计算过程:然后告诉学生:这种算法是将4分成1和3,先把9和1凑成10,再加剩下的3,这样算就会很方便,这样的方法就是“凑十法”。帮助学生根据动作过程抽象并认识“凑十法”。这样,学生的数感在讨论和观察中得到了进一步的发展。⑷解决问题,提升数感.当学生把所学知识应用到生活中去,才能更好地掌握知识,内化知识.估算是解决问题的一种重要方法,老师们应该特别重视起来。比如学生在认识10以内数后,再认识20以内、100以内的数时,可以对具体实物通过估一估、数一数等活动帮助学生形成对十、百等数量大小的感觉,如数100粒黄豆、100根小棒,估计教室里的学生人数,估计一堆水果的数量等。我们还可以就同一个数在实际生活中的多种意义所表现的数量来加强对数的感知。比如1200张纸大约有多厚?你的1200步大约有多长?1200名学生站成做广播操的队形需要多大的场地?类似这样的问题可让学生举一反三。总之,培养学生数感的过程是循序渐进的.培养学生的数感,可以使学生有更多的机会接触社会,体验现实,表达自己对问题的看法,用不同的方式思考和解决问题,这无疑会有助于学生创新精神和实践能力的培养.随着数感的建立,发展和强化,学生的整体数学素养也会有所提高.2、符号意识所谓符号就是针对具体事物对象而抽象概括出来的一种简略的记号或代号。数字、字母、图形、关系式等等构成了数学的符号系统。此次标准修订,将原来的“符号感”改为了“符号意识”。感觉是有被动的意味,而意识是有主动实践意义的,数学符号对于学习者来说主要的还不是潜意识、直觉或感觉,而是一种主动的使用符号的心理倾向。所以用“意识”更准确些。符号在数与代数部分中的应用如下表。知识领域知识点应用举例应用拓展数与代数数的表示阿拉伯数字:0-9中文数字:一--十百分号:%千分号:‰用数轴表示数数的运算+、-、×、÷、()﹝﹞﹛﹜²(平方)³(立方)数的大小关系=、≈、、≥、≤、≠运算定律加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac方程ax+b=c数量关系时间、速度和路程:s=vt数量、单价和总价:a=np正比例关系:y/x=k反比例关系:xy=k用表格表示数量间的关系用图象表示数量间的关系如何发展符号意识:(1)挖掘生活经验,体会符号必要性:其实在学习之前,学生已积累了大量的符号经验,如℃、↑、○等。正是这些生活中的符号积累,最能激发学生在数学学习中创造性地使用符号,体会符号产生的必要性。教学中,教师要关注学生已有的符号经验,将数学教学设计成看得见、摸得着的物质化实践活动。如教学“找规律”时,(课件出示):路边这排树有什么规律?生:是按照紫色、绿色、紫色、绿色……这样的规律排列的。师:我们能不能想办法把这排小树的规律表示出来呢?这样,老师给了学生自主探索、实现自我的空间,他们有的摆,有的画,有的用数字表示,有的用图形代替(生1:△□△□△□……;生2:●○●○●○……;生3:□■□■□■……;生4:121212……)多么富有个性的创造!这正是已有的符号观念在起作用,他们惊喜地发现自己也是一个“研究者、探索者、发现者”,体会符号给数学学习带来的无限乐趣。(2)符号表示运算律、计算公式和数量关系:加法结合律:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。(a+b)+c=a+(b+c)由此看出,用字母表示运算定律、计算公式和数量关系比用文字叙述运算定律更简明、易记,也便于学生灵活运用。如果将解决具体问题的思维操作转化为对符号的操作,有利于增强学生建立数学模型的意识,提高解决实际问题的能力,培养了学生的数学语言表达能力,通过对公式的变形,进一步深化了符号感。(3)数形结合——培养符号的意识在一年级“认数”单元,教材十分注意加强对数的实际意义的理解,在认识了1—5以后,教学几和第几的认识,让学生联系生活经验,体会一个数可以用来表示物体的个数,也可以用来表示物体排列的顺序。教材还十分重视帮助学生建立数的大小概念,把握数的大小关系。在教学“=”“”“”的认识时,例题提供了童话场景“森林运动会”,从不同动物只数的比较中,抽象出数的大小关系。比较两种物体数量的多与少,基本方法是一一对应、数形结合。通过一一对应的排列让学生明确它们的只数,以此建立“同样多”的概念,在此基础上用数形结合的方法抽象出“4=4”,认识并

1 / 43
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功