December20046.2定积分的应用ApplicationsofDefiniteIntegralsDecember2004一、平面图形的面积AreasbetweenCurvesDecember20041.直角坐标情形December2004面积问题可以不用微元法,用定积分的几何意义即可。ab()yfxA(1)设()0()fxaxb由定积分的几何意义:由y=f(x),y=0,x=a,x=b所围成的曲边梯形的面积A等于:()baAfxdx=()bafxdx曲线y=f(x)下方的面积December2004ab()yfxx()dAfxxdA面积微元:()fxdxAx()fx()baAfxdx=December2004()yfx(2)设f(x)任意由y=f(x),y=0,x=a,x=b所围成的图形的面积:()baAfxdx=ab1A2A3AA1A2A3Acd()caAfxdx=[()]dcfxdx()bdfxdxDecember2004(3)设由y=f(x),y=g(x),x=a,x=b所围成的图形的面积:A()()()fxgxaxb()bafxdx()bagxdx[()()]baAfxgxdx[()()]dAfxgxdxba()yfxA()ygx口诀:函数大减小,积分左到右《高等数学学习手册》162页,表6.1.1(有误)December2004()()()fxgxaxb[()()]baAfxgxdx[()()]dAfxgxdxab()yfxA()ygxab()yfxA()ygx函数是否为正,则无关紧要。往上平移December2004(4)设f(x),g(x)任意由y=f(x),y=g(x),x=a,x=b所围成的图形的面积:A([]())cagxfxdx()()baAfxgxdx1A2A([]())bcfxgxdxba()yfx()ygxc1A2ADecember2004(5)设()0()fycyd由定积分的几何意义:由x=f(y),x=0,y=c,y=d所围成的曲边梯形的面积:()dcAfydy=cd()xfyA详细的面积计算公式(直角坐标)见《高等数学学习手册》162页,表6.1.1December2004例1计算由两条抛物线xy2和2xy所围成的图形的面积.解两曲线的交点)1,1()0,0(面积元素dxxxdA)(2选为积分变量x]1,0[xdxxxA)(21010333223xx.312xy2yxDecember2004例求由sin,yxsin2yx所围成的平面图形的面积.解作图求交点sinyxsin2yxsinsin2xx3x(0)x300xxDecember2004sinyxsin2yx3030sinn2()sixAxdx3sin2()sinxxdx301[cos2cos]2xx31[coscos2]2xx1494521494with(plots):xzou:=implicitplot(y=0,x=0..3,y=-0.2..0.2):yzou:=implicitplot(x=0,x=-0.2..0.2,y=0..5):quxian:=plot({sin(x),sin(2*x)},x=0..Pi,y=-1..1,thickness=4):display(xzou,yzou,quxian,tickmarks=[0,0],scaling=constrained);December2004例求由2(1)1,yxyx所围成的平面图形的面积.解作图求交点2(1)1yxyx(0,0)2(1)1yxyxA(3,3)3顶点:(1,1)10(3,3)with(plots):xzou:=implicitplot(y=0,x=0..3,y=-0.2..0.2):yzou:=implicitplot(x=0,x=-0.2..0.2,y=0..3.5):quxian:=implicitplot({(y-1)^2=1+x,y=x},x=-1.2..3.5,y=-1..3.5,thickness=4):display(xzou,yzou,quxian,tickmarks=[0,0],scaling=constrained);December20042(1)1yxyx310(3,3)方法一01[11()]11xxdx12AAA1A2A30[11]xdxx92很麻烦!December20042(1)1yxyx30(3,3)方法二2302[()]dyyyyA92很简单!A22xyy3xy320(3)yydyDecember20042.参数方程设曲线方程由参数方程给出:()()xxtyyt()tx(t)是t的增函数()ax()bx则由曲线x=x(t),y=y(t),x轴,x=a,x=b所围成的图形的面积:baAydx=()()ytxtdt=见《高等数学学习手册》163页,6.1.3节December2004ab例3求椭圆12222byax的面积解方法一由对称性知总面积等于4倍在第一象限部分面积.14AAab1A04aydx2204abaxdxawith(plots):xzou:=implicitplot(y=0,x=-2..2,y=-0.2..0.2):yzou:=implicitplot(x=0,x=-2..0.2,y=-1.2..1.2):quxian:=implicitplot(x^2/3+y^2=1,x=-2..2,y=-2..2,thickness=4):display(xzou,yzou,quxian,tickmarks=[0,0],scaling=constrained);December2004ab方法二椭圆的参数方程tbytaxsincos14AA204sin(cos)btdat2204sinabtdtab1A04aydx(02)tDecember20043.极坐标方程设曲线方程由极坐标方程给出:()rr()由围成一个曲边扇形()rr曲线,直线,O()rr求曲边扇形的面积AADecember2004作为弥补:见《高等数学学习手册》355页,附录A.4.4节:极坐标有极坐标知识和若干常用图形的极坐标方程(或见教材345页)听说中学已经将极坐标的内容砍掉了?听到这个消息我们大学老师感到很悲哀、很难过、也很无奈。这可是一个严重的错误!必须立即纠正!没有极坐标,我们将失去很多漂亮的……曲线December2004cosxrsinyr22rxyarctanyx(,)xy(,)rrxy注意:教材用的是直角坐标与极坐标的关系December2004直角坐标极坐标圆222xyarara(,)rODecember2004直角坐标极坐标圆222()xaya2cosra222xyaxcos2ra或2ar(,)raODecember2004直角坐标极坐标圆222()xyaa2sinra222xyaysin2ra或2ar(,)raODecember2004其他用极坐标表示的图形见《高等数学学习手册》355页,表A.4.4或教材345-346页December2004用微元法导出面积微元dAO()rr曲边扇形的面积AA2()r2r212rdA212dArdAdA212rd21()2ArdDecember2004O2()rrA1()rrA221()2rd211()2rd22211[()()]2rrdDecember2004详细的面积计算公式(极坐标)见《高等数学学习手册》163页,表6.1.221()2ArdDecember2004a2a例5求心形线所围成的图形的面积:(1cos)ra(0)a(02)解作图rDecember2004a2a(1cos)ra(0)a(02)22012Ard2220(1cos)2ad2220(12coscos)2ad232arwith(plots):a:=1.3:plot(a*(1+cos(t)),t=0..2*Pi,coords=polar,thickness=5);