1习题一(P13)2.设()at是向量值函数,证明:(1)a常数当且仅当(),()0atat;(2)()at的方向不变当且仅当()()0atat。(1)证明:a常数2a常数(),()atat常数(),()(),()0atatatat2(),()0atat(),()0atat。(2)注意到:()0at,所以()at的方向不变单位向量()()()atetat常向量。若单位向量()()()atetat常向量,则()0()()0etetet。反之,设()et为单位向量,若()()0etet,则()//()etet。由()et为单位向量(),()1(),()0etetetet()()etet。从而,由()//()()0()()()etetetetetet常向量。所以,()at的方向不变单位向量()()()atetat常向量()()1()()0()()0()()()atatdetetatatatdtat2111()()()()()0()()()datatatatdtatatat()()0atat。即()at的方向不变当且仅当()()0atat。补充:定理()rt平行于固定平面的充要条件是(),(),()0rtrtrt。2证明::若()rt平行于固定平面,设n是平面的法向量,为一常向量。于是,(),0(),0,(),0rtnrtnrtn(),(),()(),(),()0rtrtrtrtrtrt共面。:若(),(),()0rtrtrt,则(),(),()rtrtrt共面。若()()0rtrt则()rt方向固定,从而平行于固定平面。若()()0rtrt,则()()()rtrtrt。令()()(),ntrtrt则()()()()()()()()()()()()()()()()()()()0()0()()()ntrtrtrtrtrtrtrttrttrttrtrttntntntntntntrt,又有固定的方向,又()rt平行于固定平面。3.证明性质1.1与性质1.2。性质1.1(1)证明:设11232123312323123(,,),(,,),(,,),(,,)vxxxvyyyvzzzvv,则23311223123123233112123,,,,ijkyyyyyyvvyyy123322311331221233112123123233112123233231131221212213311332332112211311,,,=(),,,,[][],[][],[wyzyzwyzyzwyzyzijkxxxxxxvvvxxx左322332223312233133112331121122311223223313311211223223313311211223223311][][][],[][],[][][],[],[][],[],[][xyzyzxzxzyxyxyzxzxzyxyxyzxzxzyxyxyzxzxzyxzxzyxzxzyxyxyzxyxyzxyxyzxzxzxz133112221122333223311133112221122333112233123223311123132123],[],[][],[],[][],,[],,,,yxzxzxzyxzxzxzyxyxyxyzxyxyxyzxyxyxyzxzxzxzyyyxyxyxyzzzvvvvvv右(2)证明:设1123212331234123(,,),(,,),(,,),(,,)vxxxvyyyvzzzv,则323311212123123233112123123322311331221233112341231232331121231233223113312,,,,,,.,,,,,,ijkxxxxxxvvxxxXXXyyyyyyyyyXxyxyXxyxyXxyxyijkzzzzzzvvzzzYYY2112341122332332233231133113122112212233223311331133112211222233223311331133.=,()()()()()()[][zwvvvvXYXYXYxyxyzwzwxyxyzwzwxyxyzwzwxzywywxzywxzxzywxzywywxzxwyzyzxwyzxwxzyw左113311221122111122223333223322331133113311221122111122223333223322331133113311221122][()][()](xwyzxwyzyzxwxyzwxyzwxyzwxzywywxzywxzxzywxzywywxzxyzwxyzwxyzwxwyzyzxwyzxwxwyzxwyzyzxwx11223311223311223311223313241423)()()()=,,zxzxzywywywxwxwxwyzyzyzvvvvvvvv右(3)证明:设112321233123(,,),(,,),(,,),vxxxvyyyvzzz,则2331121212312323311212312332231133122131231211223312332231133122112312312,,,,,,,,,()()()(ijkxxxxxxvvxxxXXXyyyyyyyyyXxyxyXxyxyXxyxyvvvvvvzXzXzXzxyxyzxyxyzxyxyzxyyzxxyz3123123123)()zyxxzyyxz同理,2331123112312323311212312332231133122123123111223312332231133122112312312,,,,,,,,,()()()(ijkzzzzzzvvzzzYYYxxxxxxxxxYzxzxYzxzxYzxzxvvvvvvyYyYyYyzxzxyzxzxyzxzxzxyyzxxyz3123123123312)(),,zyxxzyyxzvvv42331122312312323311212312332231133122112312311223312332231133122112312312,,,,,,,,,()()()(ijkyyyyyyvvyyyZZZzzzzzzzzzZyzyzZyzyzZyzyzvvvvvvxZxZxZxyzyzxyzyzxyzyzzxyyzxxyz3123123123312)(),,zyxxzyyxzvvv所以,123312231,,,,,,vvvvvvvvv。性质1.2证明:(1)()(,,)ijkffffxyzxyzfffxyz222222,,,,(0,0,0)0.ffffffyzzyzxxzxyyxffffffyzzyzxxzxyyx证明:(2),,ijkFxyzPQR,,,RQPRQPyzzxxy2222220.RQPRQPxyzyzxzxyRQPRQPxyxzyzyxzxzy4.设123;,,Oeee是正交标架,是1,2,3的一个置换,证明:(1)(1)(2)(3);,,Oeee是正交标架;(2)123;,,Oeee与(1)(2)(3);,,Oeee定向相同当且仅当是一个偶置换。(1)证明:当ij时,()()ij()(),0ijee;当ij时,()()ij()(),1ijee,5所以,(1)(2)(3);,,Oeee是正交标架。(2)证明:A)当(12)(1)2,(2)1,(3)3(1)(2)(3)213123010010,,,,,,100,det1001;001001eeeeeeeeeB)当(13)(1)3,(2)2,(3)1(1)(2)(3)321123001001,,,,,,010,det0101;100101eeeeeeeeeC)当(23)(2)3,(3)2,(1)1(1)(2)(3)132123100100,,,,,,001,det0011;010010eeeeeeeeeD)当(1)(12)(12),此时,(1)(2)(3);,,Oeee123;,,Oeee;E)当(123)(12)(13)(1)2,(2)3,(3)1,(1)(2)(3)231123001001,,,,,,100,det1001;010010eeeeeeeeeF)当(132)(13)(12)(1)3,(3)2,(2)1,(1)(2)(3)312123010001,,,,,,001,det1001.100010eeeeeeeee所以,123;,,Oeee与(1)(2)(3);,,Oeee定向相同当且仅当是一个偶置换。习题二(P28)1.求下列曲线的弧长与曲率:(1)2yax解:2()(,)()(1,2)rxxaxrxax2200()()14xxlxrtdtatdt6222||tan,14secatat令,则2231114=sec22||atdtdIaa32sec(sectansec)Idd3tansecsectansecsecsecddddtansecsecId1[tansecln|sectan|]2IC222212||14ln2||142atatatatC所以,2214atdt32222111=s