2014年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分.只有一项是符合题目要求的.)1.5的倒数为()A.B.5C.D.﹣5解答:解:5的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.计算x2•x3的结果为()A.2x2B.x5C.2x3D.x6解答:解:原式=x2+3=x5.故选:B.点评:本题考查了同底数幂的乘法,底数不变指数相加是解题关键.3.如图的几何图形的俯视图为()A.B.C.D.解答:解:从上面看:里边是圆,外边是矩形,故选:C.点评:本题考查了简单组合体的三视图,注意所有的看到的棱都应表现在俯视图中.4.某校八年级(2)班5名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是()A.38B.39C.40D.42解答:解:题目中数据共有5个,中位数是按从小到大排列后第3个数作为中位数,故这组数据的中位数是40.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数,比较简单.5.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为()A.30°B.60°C.120°D.150°解答:解:由等边△ABC得∠C=60°,由三角形中位线的性质得DE∥BC,∠DEC=180°﹣∠C=180°﹣60°=120°,故选:C.点评:本题考查了三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.6.已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2B.2C.4D.﹣4解答:解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cmB.12cmC.15cmD.18cm解答:解:圆锥的母线长=2×π×6×=12cm,故选B.点评:本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是()A.B.C.D.解答:解:抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,∴△=(﹣2)2﹣4(m+1)>0解得m<0,∴函数y=的图象位于二、四象限,故选:A.点评:本题考查了反比例函数图象,先求出m的值,再判断函数图象的位置.9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时B.2.2小时C.2.25小时D.2.4小时解答:解:设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,解得∴AB段函数的解析式是y=80x﹣30,离目的地还有20千米时,即y=170﹣20=150km,当y=150时,80x﹣30=150x=2.25h,故选:C.点评:本题考查了一次函数的应用,利用了待定系数法求解析式,利用函数值求自变量的值.10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是()A.外切B.相交C.内含D.内切解答:解:∵O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm,此时两圆的半径的差为:3﹣2=1cm,∴此时内切,故选D.点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.解答:解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在RT△BGF和RT△BCF中,∴RT△BGF≌RT△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.点评:本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=BC再利用比例式求解..12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.二、填空题(本大题共4小题,每小题3分,共12分.请将最后答案直接填在题中横线上.)13.分解因式:3a2+6a+3=3(a+1)2.解答:解:3a2+6a+3,=3(a2+2a+1),=3(a+1)2.故答案为:3(a+1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.使函数y=+有意义的自变量x的取值范围是x>﹣2,且x≠1.解答:解:根据题意得:x+2≥0且(x﹣1)(x+2)≠0,解得x≥﹣2,且x≠1,x≠﹣2,故答案为:x>﹣2,且x≠1.点评:本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.解答:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,S=4×2=4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.16.(3分)(2014•泸州)如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是②④(写出所有正确命题的序号).考点:反比例函数综合题.菁优网版权所有分析:(1)若k=4,则计算S△OEF=≠,故命题①错误;(2)如答图所示,若,可证明直线EF是线段CN的垂直平分线,故命题②正确;(3)因为点F不经过点C(4,3),所以k≠12,故命题③错误;(4)求出直线EF的解析式,得到点D、G的坐标,然后求出线段DE、EG的长度;利用算式DE•EG=,求出k=1,故命题④正确.解答:解:命题①错误.理由如下:∵k=4,∴E(,3),F(4,1),∴CE=4﹣=,CF=3﹣1=2.∴S△OEF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△CEF=S矩形AOBC﹣OA•AE﹣OB•BF﹣CE•CF=4×3﹣×3×﹣×4×1﹣××2=12﹣2﹣2﹣=,∴S△OEF≠,故命题①错误;命题②正确.理由如下:∵k=,∴E(,3),F(4,),∴CE=4﹣=,CF=3﹣=.如答图,过点E作EM⊥x轴于点M,则EM=3,OM=;在线段BM上取一点N,使得EN=CE=,连接NF.在Rt△EMN中,由勾股定理得:MN===,∴BN=OB﹣OM﹣MN=4﹣﹣=.在Rt△BFN中,由勾股定理得:NF===.∴NF=CF,又∵EN=CE,∴直线EF为线段CN的垂直平分线,即点N与点C关于直线EF对称,故命题②正确;命题③错误.理由如下:由题意,点F与点C(4,3)不重合,所以k≠4×3=12,故命题③错误;命题④正确.理由如下:为简化计算,不妨设k=12m,则E(4m,3),F(4,3m).设直线EF的解析式为y=ax+b,则有,解得,∴y=x+3m+3.令x=0,得y=3m+3,∴D(0,3m+3);令y=0,得x=4m+4,∴G(4m+4,0).如答图,过点E作EM⊥x轴于点M,则OM=AE=4m,EM=3.在Rt△ADE中,AD=AD=OD﹣OA=3m,AE=4m,由勾股定理得:DE=5m;在Rt△MEG中,MG=OG﹣OM=(4m+4)﹣4m=4,EM=3,由勾股定理得:EG=5.∴DE•EG=5m×5=25m=,解得m=,∴k=12m=1,故命题④正确.综上所述,正确的命题是:②④,故答案为:②④.点评:本题综合考查了函数的图象与性质、反比例函数图象上点的坐标特征、比例系数k的几何意义、待定系数法、矩形及勾股定理等多个知识点,有一定的难度.本题计算量较大,解题过程中注意认真计算.三、(本大题共3小题,每题6分,共18分)17.(6分)(2014•泸州)计算:﹣4sin60°+(π+2)0+()﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.菁优网版权所有分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣4×+1+4=5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014•泸州)计算(﹣)÷.考点:分式的混合运算.菁优网版权所有分析:首先把除法运算转化成乘法运算,然后找出最简公分母,进行通分,化简.解答:解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.点评:此题主要考查了分式的混合运算,通分、因式分解和约分是解答的关键.19.(6分)(2014•泸州)如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.考点:全等三角形的判定与性质;正方形的性质.菁优网版权所有专题:证明题.分析:根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得三角形全等,根据全等三角形的性质,可得答案.解答:证明:∵正方形ABCD,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AGB=90°∠ABG+∠CBF=90°,∵∠ABG+∠FNC=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF.点评:本题考查了全等三角形的判定与性质,利用了正方形的性质,直角三角形的性质,余角的性质,全等三角形的判定与性质.四、(本大题共1小题,每题7分,共14分)20.(7分)(2014•泸州)某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0