..高一数学章节测试题——数列(考试时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.)1.已知na为等差数列,99,105642531aaaaaa,则20a等于()A.1B.1C.3D.72.记等差数列的前n项和为nS,若244,20SS,则该数列的公差d()A.2B.3C.6D.73.如果等差数列na中,3a+4a+5a=12,那么1a+2a+…+7a=()A.14B.21C.28D.354.设na是公比为正数的等比数列,若16,151aa,则数列na前7项的和为()A.63B.64C.127D.1285.已知各项均为正数的等比数列na,123aaa=5,789aaa=10,则456aaa=()A.52B.7C.6D.426.等差数列na的前n项和为nS,已知2110mmmaaa,2138mS,则m()A.38B.20C.10D.97.已知等差数列na中,15,652aa.若nnab2,则数列nb的前5项和等于()A.30B.45C.90D.1868.设na是公差不为0的等差数列,12a且136,,aaa成等比数列,则na的前n项和nS=()A.2744nnB.2533nnC.2324nnD.2nn9.设等比数列na的前n项和为nS,若63SS=3,则96SS=()A.2B.73C.83D.3..10.已知na为等差数列,1a+3a+5a=105,246aaa=99.以nS表示na的前n项和,则使得nS达到最大值的n是()A.21B.20C.19D.1811.已知数列na的前n项和nS满足1,1aSSSmnmn,那么10a()A.1B.9C.10D.5512.已知等比数列na满足0,1,2,nan,且25252(3)nnaan,则当1n时,2123221logloglognaaa()w.w.w.k.s.5.u.c.o.mA.(21)nnB.2(1)nC.2nD.2(1)n选择题答题卡:题号123456789101112答案二、填空题(本大题共4小题,每小题5分,共20分.)13.设等差数列na的前n项和为nS.若972S,则249aaa_______________.14.在等比数列na中,若公比q=4,且前3项之和等于21,则该数列的通项公式na_____________.15.设数列na中,1211naaann,,则通项na_____________.16.设na为公比1q的等比数列,若2004a和2006a是方程03842xx的两根,则20072006aa_____________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.已知na为等比数列,320,2423aaa,求na的通项公式...18.已知na为等差数列,且36a,60a.(Ⅰ)求na的通项公式;(Ⅱ)若等比数列nb满足18b,2123baaa,求nb的前n项和公式.19.已知等差数列na满足3577,26aaa,na的前n项和为nS.(Ⅰ)求na及nS;(Ⅱ)令21()1nnbnNa,求数列nb的前n项和Tn.20.已知等差数列na的前n项和为22()R,nSpnnqpq,nN.(Ⅰ)求q的值;(Ⅱ)若1a与5a的等差中项为18,nb满足nnba2log2,求数列nb的前n项和...21.成等差数列的三个正数之和等于15,并且这三个数分别加上2,5,13后成为等比数列nb中的543,,bbb.(Ⅰ)求数列nb的通项公式;(Ⅱ)数列nb的前n项和为nS,求证:数列45nS是等比数列.22.等比数列na的前n项和为nS,已知对任意的nN,点(,)nnS,均在函数(0xybrb且1,,bbr均为常数)的图像上.(Ⅰ)求r的值;(Ⅱ)当2b时,记1()4nnnbnNa求数列nb的前n项和nT...参考答案:一、选择题答题卡:题号123456789101112答案BBCCACCABBAC二、填空题13.___24____.14.)(4*1Nnn.15.)(22*2Nnnn.16.______18______.三、解答题17.解:设等比数列na的公比为q,则.2,23432qqaaqqaa.32022,32042qqaa即.3131qq解之得3q或.31q当3q时,)(32*333Nnqaannn;当31q时,)(32)31(2*3333Nnqaannnn.18.解:(Ⅰ)设等差数列{}na的公差d.因为366,0aa,所以.102,2,633136daadaad从而所以10(1)2212nann.(Ⅱ)设等比数列{}nb的公比为q.因为24,832121aaabb,所以824q.即q=3.所以{}nb的前n项和公式为1(1)4(13)1nnnbqSq.19.解:(Ⅰ)设等差数列na的首项为1a,公差为d..13,2626756aaaa..由135721613daadaa解得.231da,12)1(1ndnaan,.22)(21nnaanSnn(Ⅱ)12nan,)1(412nnan,11141)1(41nnnnbn.nnbbbT21=)1113121211(41nn=)111(41n=4(1)nn.所以数列nb的前n项和nT=4(1)nn.20.解:(Ⅰ)qpSa211,23)2()44(122pqpqpSSa,25)44()69(233pqpqpSSa,由3122aaa得,25246pqpp.0q(Ⅱ)根据题意,5132aaa所以1a与5a的等差中项为183a.由(Ⅰ)知.4,1825pp从而.8,10,221daa.68)1(1ndnaan.34log,68log222nbnbannn故.16216812)2(213434nnnnnb因此,数列}{nb是等比数列,首项21b,公比.16q..所以数列nb的前n项和qqbTnn1)1(1).116(152161)161(2nn21.解:(Ⅰ)设成等差数列的三个正数分别为,,adaad,依题意,得15,5.adaada解得所以{}nb中的345,,bbb依次为7,10,18.dd依题意,有(7)(18)100,213dddd解得或(舍去)故{}nb的10,5743bdb,公比2q.由22311152,52,.4bbbb即解得所以{}nb是以54为首项,2为以比的等比数列,其通项公式为1352524nnnb.(Ⅱ)数列{}nb的前n项和25(12)5452124nnnS,即22545nnS所以1112555524,2.542524nnnnSSS因此55{}42nS是以为首项,公比为2的等比数列.22.解:(Ⅰ)因为对任意的nN,点(,)nnS,均在函数(0xybrb且1,,bbr均为常数)的图像上.所以得nnSbr,11aSbr,bbrbrbSSa22122)()(,2323233)()(bbrbrbSSa,na为等比数列,3122aaa.从而).1()()1(222bbrbbb.1,10rbbbb且又解得1r.(Ⅱ)当2b时,由(Ⅰ)知,12nnS...当2n时,.22)12(22)12()12(11111nnnnnnnnnSSa111ba满足上式,所以其通项公式为)(2*1Nnann.所以111114422nnnnnnnba234123412222nnnT,………………(1)3451212341222222nnnnnT……(2))()(21,得:23451212111112222222nnnnT31211(1)112212212nnn12311422nnn.所以113113322222nnnnnnT.