数学分析15.3傅里叶级数收敛定理的证明

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十五章傅里叶级数3收敛定理的证明预备定理1:(贝塞尔不等式)若函数f在[-π,π]上可积,则2a20+1n2n2n)b+(a≤ππ-2(x)fπ1dx,其中an,bn为f的傅里叶系数.证:令Sm(x)=2a0+m1nnnsinnx)bcosnx(a,则ππ-2m(x)]S-[f(x)dx=ππ-2(x)fdx-2ππ-m(x)f(x)Sdx+ππ-2m(x)Sdx.其中ππ-m(x)f(x)Sdx=ππ-0f(x)2adx+dxcosnxf(x)am1nππ-n+sinnxdxf(x)bππ-n=20a2π+πm1n2n2n)b+(a.由三角函数的正交性,有ππ-2m(x)Sdx=ππ-2m1nnn0sinnx)bcosnx(a2adx=ππ-202adx+ππ-m1nππ-22nππ-22nnxdxsinbnxdxcosadx=20a2π+πm1n2n2n)b+(a.∴ππ-2m(x)]S-[f(x)dx=ππ-2(x)fdx-20πa-2π1n2n2n)b+(a+20a2π+πm1n2n2n)b+(a=ππ-2(x)fdx-20a2π+πm1n2n2n)b+(a≥0.∴2a20+m1n2n2n)b+(a≤ππ-2(x)fπ1dx对任何正整数m都成立.又ππ-2(x)fπ1dx为有限值,∴正项级数2a20+1n2n2n)b+(a的部分和数列有界,∴2a20+1n2n2n)b+(a收敛且有2a20+1n2n2n)b+(a≤ππ-2(x)fπ1dx.推论1:(黎曼-勒贝格定理)若f为可积函数,则cosnxf(x)limππ-ndx=sinnxf(x)limππ-n=0.证:由2a20+1n2n2n)b+(a收敛知,2n2nb+a→0(n→∞),∴an→0,bn→0,(n→∞),∴cosnxf(x)limππ-ndx=sinnxf(x)limππ-ndx=0.推论2:若f为可积函数,则x21nsinf(x)limπ0ndx=x21nsinf(x)lim0π-ndx=0.证:∵x21nsin=cos2xsinnx+sin2xcosnx,∴x21nsinf(x)π0dx=sinnx2xf(x)cosπ0dx+cosnx2xf(x)sinπ0dx=sinnx(x)Fππ-1dx+cosnx(x)Fππ-2dx,其中F1(x)=πx02xcos)x(f0xπ0,,;F2(x)=πx02xsin)x(f0xπ0,,.可知F1与F2在[-π,π]上可积.由推论1可知sinnx(x)Flimππ-1ndx=cosnx(x)Flimππ-2n=0.∴x21nsinf(x)limπ0ndx=0.同理可证:x21nsinf(x)lim0π-ndx=0.预备定理2:若f是以2π为周期的函数,且在[-π,π]上可积,则它的傅里叶级数部分和Sn(x)可写成Sn(x)=ππ-2t2sint21nsint)f(xπ1dt,当t=0时,被积函数中的不定式由极限2t2sint21nsinlim0t=n+21确定.证:在傅里叶级数部分和Sn(x)=2a0+sinkx)b+coskx(an1kkk中代入傅里叶系数公式,可得:Sn(x)=ππ-f(u)2π1du+n1kππ-ππ-sinkxsinkuduf(u)+coskxcoskuduf(u)π1=ππ-n1k)sinkusinkx+kxcoskuducos(21f(u)π1du=ππ-n1kx)-cosk(u21f(u)π1du.令u=x+t,得Sn(x)=x-πx-π-n1kcoskt21t)f(xπ1dt,又被积函数周期为2π,且n1kcoskt21=2t2sint21nsin,∴Sn(x)=ππ-2t2sint21nsint)f(xπ1dt.(f的傅里叶级数部分和积分表示式).收敛定理15.3证明:若周期为2π的函数f在[-π,π]上按段光滑,则在每一点x∈[-π,π],f的傅里叶级数2a0+1nnnsinnx)b+cosnx(a收敛于f在点x的左右极限的算术平均值,即20)-f(x0)f(x=2a0+1nnnsinnx)b+cosnx(a,其中an,bn为傅里叶系数.证:记f的傅里叶级数的部分和为Sn(x)=ππ-2t2sint21nsint)f(xπ1dt.∵ππ-2t2sint21nsinπ1dt=ππ-n1kcoskt21π1dt=1;又上式左边为偶函数,∴两边同时乘以f(x+0)后得:20)f(x=ππ-2t2sint21nsin0)f(xπ1dt.令φ(t)=-2tsin20)f(x-t)f(x=-2tsin2tt0)f(x-t)f(x,t∈(0,π].则φ(t)lim0t=-f’(x+0)·1=-f’(x+0).再令φ(0)=-f’(x+0),则φ在点t=0右连续.又φ在[0,π]上至多只有有限个第一类间断点,∴φ在[0,π]上可积.根据预备定理1的推论2,有2t2sint21nsint)]f(x-0)[f(xπ1limπ0ndt=t21nsinφ(t)π1limπ0ndt=0,∴dt2t2sint21nsint)f(xπ1-20)f(xlimπ0n=0,同理可证dt2t2sint21nsint)f(xπ1-20)f(xlimπ0n=0;∴dt2t2sint21nsint)f(xπ1-20)-f(x0)f(xlimπ0n=(x)S-20)-f(x0)f(xlimnn=0.即20)-f(x0)f(x=2a0+1nnnsinnx)b+cosnx(a.习题1、设f以2π为周期且具有二阶连续的导函数,证明f的傅里叶级数在(-∞,+∞)上一致收敛于f.证:由f在(-∞,+∞)上光滑,知f’在[-π,π]上可积,且f’的傅里叶系数为:a’0=0;a’n=nbn,b’n=-nan,(n=1,2,…).∴|an|+|bn|=n|a|n+n|b|n≤)n1a(2122n+)n1b(2122n=)ba(212n2n+2n1.由贝塞尔不等式知级数1n2n2n)ba(收敛,又级数1n2n1级数,由正项级数的比较原则知,2|a|0+1nnn|)b||a(|收敛,由定理15.1知f的傅里叶级数在(-∞,+∞)上一致收敛于f.2、设f为[-π,π]上的可积函数.证明:若f的傅里叶级数在[-π,π]上一致收敛于f,则帕塞瓦尔等式成立,即ππ-2(x)fπ1dx=2a20+1n2n2n)b+(a,其中an,bn为傅里叶系数.证:∵f的傅里叶级数在[-π,π]上一致收敛于f,∴f(x)=2a0+1nnnsinnx)b+cosnx(a.∴ππ-2(x)fπ1dx=ππ-1nnn0sinnx)b+cosnx(a2a)x(fπ1dx=2a20+ππ-1nnnsinnx])x(fb+cosnx)x(f[aπ1dx.∵f在[-π,π]上可积,∴f在[-π,π]上有界.∴1nnnsinnx])x(fb+cosnx)x(f[a在[-π,π]上一致收敛.∴ππ-2(x)fπ1dx=2a20+dx]sinnx)x(fb+cosnxdx)x(f[aπ1ππ-1nnππ-ndx=2a20+1n2n2nπ)b+π(aπ1=2a20+1n2n2n)b+(a.3、由于帕塞瓦尔等式对于在[-π,π]上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式:(1)8π2=1n2)1-n2(1;(2)6π2=1n2n1;(3)90π4=4n1.证:(1)对函数f(x)=πx04π0xπ-4π-,,在(-π,π)上展开傅里叶级数得:f(x)=1n12n1)xsin(2n,其中a0=an=0,bn=2n)1(1n,n=1,2,…;根据帕塞瓦尔等式有ππ-2(x)fπ1dx=1n2nb=1n2n2n(-1)-1=1k21)-(2k1,又ππ-2(x)fπ1dx=ππ-216ππ1dx=8π2,∴8π2=1n2)1-n2(1.(2)对函数f(x)=x在(-π,π)上展开傅里叶级数得:f(x)=21n1nnsinnx)1(.其中a0=an=0,bn=n)1(21n,n=1,2,…;根据帕塞瓦尔等式有ππ-2(x)fπ1dx=1n2nb=41n2n1,又ππ-2(x)fπ1dx=ππ-2xπ1dx=32π2,∴32π2=41n2n1,即6π2=1n2n1.(3)对函数f(x)=x2在(-π,π)上展开傅里叶级数得:f(x)=31π2+41n2nncosnx(-1).其中a0=32π2,an=2nn4(-1),bn=0,n=1,2,…;根据帕塞瓦尔等式有ππ-2(x)fπ1dx=2a20+1n2na=92π4+161n4n1,又ππ-2(x)fπ1dx=ππ-4xπ1dx=32π2,∴52π4=92π4+161n4n1,即90π2=4n1.4、证明:若f,g均为[-π,π]上的可积函数,且它们的傅里叶级数在[-π,π]上分别一致收敛于f和g,则ππ-f(x)g(x)π1dx=2αa00+1nnnnn)βbαa(,其中an,bn为f的傅里叶系数,αn,βn为g的傅里叶系数.证:由f的傅里叶级数在[-π,π]上一致收敛于f,有f(x)=2a0+1nnnsinnx)b+cosnx(a.∵f,g均在[-π,π]上可积,∴1nnng(x)sinnx]b+g(x)cosnx[a在[-π,π]上一致收敛.∴ππ-f(x)g(x)π1dx=ππ-0g(x)2aπ1dx+1nππ-nng(x)sinnx]b+g(x)cosnx[aπ1dx=2αa00+1nππ-ππ-nnxg(x)sinnxdπ1b+xg(x)cosnxdπ1a=2αa00+1nnnnn)βbαa(.5、证明:若f及其导函数f’均在[-π,π]上可积,ππ-f(x)dx=0,f(-π)=f(π),且帕塞瓦尔等式成立,则ππ-2(x)]f[dx≥ππ-2[f(x)]dx.证:设a0,an,bn为f的傅里叶系数;a’0,a’n,b’n为f’的傅里叶系数.由ππ-f(x)dx=0,f(-π)=f(π),有a’0=a0=0;a’n=nbn,b’n=-nan.根据帕塞瓦尔等式,有ππ-2[f(x)]π1dx=2a20+1n2n2n)b+(a=1n2n2n)b+(a,ππ-2(x)]f[π1dx=2a20+1n2n2n)b+a(=1n2n2n2)b+(an≥1n2n2n)b+(a=ππ-2[f(x)]π1dx.∴ππ-2(x)]f[dx≥ππ-2[f(x)]dx.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功