初一数学基础知识讲义一、第一讲和绝对值有关的问题知识结构框图:二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。也可以写成:||0aaaaaa当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式|a|+|a+b|+|c-a|-|b-c|的值等于(A)A.-3aB.2c-aC.2a-2bD.b解:|a|+|a+b|+|c-a|-|b-c|=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。这道例题运用了数形结合的数学思想,由a、b、c在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。例2.已知:zx0,0xy,且xzy,那么yxzyzx的值(C)A.是正数B.是负数C.是零D.不能确定符号解:由题意,x、y、z在数轴上的位置如图所示:201020081861641421所以分析:数与代数这一领域中数形结合的重要载体是数轴。这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x、y、z三个数的大小关系,为我们顺利化简铺平了道路。虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。解:设甲数为x,乙数为y由题意得:yx3,(1)数轴上表示这两数的点位于原点两侧:若x在原点左侧,y在原点右侧,即x0,y0,则4y=8,所以y=2,x=-6若x在原点右侧,y在原点左侧,即x0,y0,则-4y=8,所以y=-2,x=6(2)数轴上表示这两数的点位于原点同侧:若x、y在原点左侧,即x0,y0,则-2y=8,所以y=-4,x=-12若x、y在原点右侧,即x0,y0,则2y=8,所以y=4,x=12例4.(整体的思想)方程xx20082008的解的个数是(D)A.1个B.2个C.3个D.无穷多个分析:这道题我们用整体的思想解决。将x-2008看成一个整体,问题即转化为求方程aa的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的相反数,所以零和任意负数都是方程的解,即本题的答案为D。例5.(非负性)已知|ab-2|与|a-1|互为相互数,试求下式的值.1111112220072007abababab分析:利用绝对值的非负性,我们可以得到:|ab-2|=|a-1|=0,解得:a=1,b=2于是1111112220072007abababab200920082009112009120081413131212120092008143132121在上述分数连加求和的过程中,我们采用了裂项的方法,巧妙得出了最终的结果.同学们可以再深入思考,如果题目变成求值,你有办法求解吗?有兴趣的同学可以在课下继续0)()(yxzyzxyxzyzx1)1(xx探究。例6.(距离问题)观察下列每对数在数轴上的对应点间的距离4与2,3与5,2与6,4与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:____相等.(2)若数轴上的点A表示的数为x,点B表示的数为―1,则A与B两点间的距离可以表示为.分析:点B表示的数为―1,所以我们可以在数轴上找到点B所在的位置。那么点A呢?因为x可以表示任意有理数,所以点A可以位于数轴上的任意位置。那么,如何求出A与B两点间的距离呢?结合数轴,我们发现应分以下三种情况进行讨论。当x-1时,距离为-x-1,当-1x0时,距离为x+1,当x0,距离为x+1综上,我们得到A与B两点间的距离可以表示为1x(3)结合数轴求得23xx的最小值为5,取得最小值时x的取值范围为-3≤x_≤2______.分析:2x即x与2的差的绝对值,它可以表示数轴上x与2之间的距离。)3(3xx即x与-3的差的绝对值,它也可以表示数轴上x与-3之间的距离。如图,x在数轴上的位置有三种可能:图1图2图3图2符合题意(4)满足341xx的x的取值范围为x-4或x-1分析:同理1x表示数轴上x与-1之间的距离,4x表示数轴上x与-4之间的距离。本题即求,当x是什么数时x与-1之间的距离加上x与-4之间的距离会大于3。借助数轴,我们可以得到正确答案:x-4或x-1。说明:借助数轴可以使有关绝对值的问题转化为数轴上有关距离的问题,反之,有关数轴上的距离问题也可以转化为绝对值问题。这种相互转化在解决某些问题时可以带来方便。事实上,BA表示的几何意义就是在数轴上表示数A与数B的点之间的距离。这是一个很有用的结论,我们正是利用这一结论并结合数轴的知识解决了(3)、(4)这两道难题。四、小结1.理解绝对值的代数意义和几何意义以及绝对值的非负性2.体会数形结合、分类讨论等重要的数学思想在解题中的应用第二讲:代数式的化简求值问题一、知识链接1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。二、典型例题例1.若多项式xyxxxmx537852222的值与x无关,求mmmm45222的值.分析:多项式的值与x无关,即含x的项系数均为零因为83825378522222yxmxyxxxmx所以m=4将m=4代人,44161644452222mmmmmm利用“整体思想”求代数式的值例2.x=-2时,代数式635cxbxax的值为8,求当x=2时,代数式635cxbxax的值。分析:因为8635cxbxax当x=-2时,8622235cba得到8622235cba,所以146822235cba当x=2时,635cxbxax=206)14(622235cba例3.当代数式532xx的值为7时,求代数式2932xx的值.分析:观察两个代数式的系数由7532xx得232xx,利用方程同解原理,得6932xx整体代人,42932xx代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。例4.已知012aa,求2007223aa的值.分析:解法一(整体代人):由012aa得023aaa2008200712007200720072222323aaaaaaa20082007120072007220072)1(200722007222222223aaaaaaaaaaaaa所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。由012aa,得aa12,所以:解法三(降次、消元):12aa(消元、、减项)20082007120072007)(20072007222222323aaaaaaaaaaa例5.(实际应用)A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A公司,年薪一万元,每年加工龄工资200元;B公司,半年薪五千元,每半年加工龄工资50元。从收入的角度考虑,选择哪家公司有利?分析:分别列出第一年、第二年、第n年的实际收入(元)第一年:A公司10000;B公司5000+5050=10050第二年:A公司10200;B公司5100+5150=10250第n年:A公司10000+200(n-1);B公司:[5000+100(n-1)]+[5000+100(n-1)+50]=10050+200(n-1)由上可以看出B公司的年收入永远比A公司多50元,如不细心考察很可能选错。例6.三个数a、b、c的积为负数,和为正数,且bcbcacacababccbbaax,则123cxbxax的值是_______。解:因为abc0,所以a、b、c中只有一个是负数,或三个都是负数又因为a+b+c0,所以a、b、c中只有一个是负数。不妨设a0,b0,c0则ab0,ac0,bc0所以x=-1+1+1-1-1+1=0将x=0代入要求的代数式,得到结果为1。同理,当b0,c0时,x=0。另:观察代数式bcbcacacababccbbaa,交换a、b、c的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a、b、c再讨论。有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质。规律探索问题:例7.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线____上,“2008”在射线___________上.(2)若n为正整数,则射线OA上数字的排列规律可以用含n的代数式表示为__________________________.分析:OA上排列的数为:1,7,13,19,…观察得出,这列数的后一项总比前一项多6,归纳得到,这列数可以表示为6n-5因为17=3×6-1,所以17在射线OE上。因为2008=334×6+4=335×6-2,所以2008在射线OD上例8.将正奇数按下表排成5列:第一列第二列第三列第四列第五列第一行1357第二行1513119第三行17192123第四行31292725根据上面规律,2007应在A.125行,3列B.125行,2列C.251行,2列D.251行,5列分析:观察第二、三、四列的数的排列规律,发现第三列数规律容易寻找第三列数:3,11,19,27,规律为8n-5因为2007=250×8+7=251×8-1所以,2007应该出现在第一列或第五列又因为第251行的排列规律是奇数行,数是从第二列开始从小到大排列,所以2007应该在第251行第5列例9.(2006年嘉兴市)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为kn2(其中k是使kn2为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是__________.分析:问题的难点和解题关键是真正理解“F”的第二种运算,即当n为偶数时,结果为kn2(其中k是使kn2为奇数的正整数),要使所得的商为奇数,这个运算才能结束。ABDCEFO17283941051161226134411第一次F②第二次F①第三次F②…449奇数,经过“F①”变为1352;1352是偶数,经过“F②”变为169,169是奇数,经过“F①”变为5