2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共13页)2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)一、填空题(每题10分,共80分)1.计算:7﹣(2.4+1×4)÷1=.2.中国北京在2015年7月31日获得了2022年第24届冬季奥林匹克运动会的主办权.预定该届冬奥会的开幕时间为2022年2月4日,星期.(今天是2016年3月12日,星期六)3.如图中,AB=5厘米,∠ABC=85°,∠BCA=45°,∠DBC=20°,AD=厘米.4.在9×9的格子纸上,1×1小方格的顶点叫做格点.如图,三角形ABC的三个顶点都是格点.若一个格点P使得三角形PAB与三角形PAC的面积相等,就称P点为“好点”.那么在这张格子纸上共有个“好点”.5.对于任意一个三位数n,用表示删掉n中为0的数位得到的数.例如n=102时=12.那么满足<n且是n的约数的三位数n有个.6.共有12名同学玩一种扑克游戏,每次4人参加,且任意2位同学同时参加的次数不超过1.那么他们最多可以玩次.7.如果2×38能表示成k个连续正整数的和,则k的最大值为.8.两把小尺子组成套尺,小尺可以沿着大尺滑动.大尺上每一个单位都标有自然数,第一把小尺将大尺上的11个单位等分为10,第二把小尺将大尺上9个单位等分为10,两把小尺的起点都为0,都分别记为1至10.现测量A,B两点间距离,A点在大尺的0单位处,B点介于大尺的18与19单位之间,将第一把小尺的0单位处于B点时,其单位3怡好与大尺上某一单位相合.如果将第二把小尺的0单位处置于B点,那么第二把小尺第2页(共13页)的第个单位怡好与大尺上某一单位相合.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的,甲胜出.但是,若乙得票数至少増加4票,则可胜甲,请计算甲乙所得的票数.10.如图,三角形ABC中,AB=180厘米,AC=204厘米,D、F是AB上的点,E,G是AC上的点,连结CD,DE,EF,FG,将三角形ABC分成面积相等的五个小三角形,则AF+AG为多少厘米.11.某水池有甲、乙两个进水阀,只打开甲注水,10小时可将空水池注满;只打开乙,15小时可将空水池往满.现要求7个小时将空水池注满,可以只打开甲注水若干小时,接着只打开乙注水若干小时,最后同时打开甲乙注水.那么同时打开甲乙的时间是多少小时?12.将一个五边形沿一条直线简称两个多边形,再将其中一个多边形沿一条直线剪成两部分,得到了三个多边形,然后将其中一个多边形沿一条直线剪成两部分,…,如此下去.在得到的多边形中要有20个五边形,则最少剪多少次?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,有一张由四个1×1的小方格组成的凸字行纸片和一张5×6的方格纸,现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸上的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)第3页(共13页)14.(15分)设n是正整数,若从任意n个非负整数中一定能找到四个不同的数a,b,c,d使得a+b﹣c﹣d能被20整除.则n的最小值是多少?第4页(共13页)2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)参考答案与试题解析一、填空题(每题10分,共80分)1.计算:7﹣(2.4+1×4)÷1=2.【分析】先算小括号里面的乘法,再算小括号里面的加法,然后算括号外的除法,最后算括号外的减法.【解答】解:7﹣(2.4+1×4)÷1=7﹣(2.4+)÷1=7﹣÷1=7﹣=2故答案为:2.2.中国北京在2015年7月31日获得了2022年第24届冬季奥林匹克运动会的主办权.预定该届冬奥会的开幕时间为2022年2月4日,星期五.(今天是2016年3月12日,星期六)【分析】首先分析2016年的3月12日到2022年的3月13日是星期几,然后再根据3月12向前推理出2月4日即可.【解答】解:依题意可知:平年365天是52个星期多1天.润年是52个星期多2天.2016年3月12到2022年3月12日经过了5个平年1个闰年,向后推的天数为1+1+1+1+1+2=7.恰好为星期六.那么2022年的2月4日到2022年的3月12日.经过24+12=36天.36÷7=5…1.从星期六前推前天.说明2022年的2月4日是星期五.故答案为:五第5页(共13页)3.如图中,AB=5厘米,∠ABC=85°,∠BCA=45°,∠DBC=20°,AD=5厘米.【分析】首先根据题意可知∠ABC=85°,∠BCA=45°.那么根据三角形内角和为180度可知∠A=50°.继续推理即可.【解答】解:依题意可知:∠ABC=85°,∠BCA=45°.那么∠A=50°.∠ABD=∠ABC﹣∠DBC=85°﹣20°=65°∠ADB=180°﹣∠A﹣∠ABD=180°﹣50°﹣65°=65°;∠ADB=∠ABD,∴AB=AD=5故答案为:54.在9×9的格子纸上,1×1小方格的顶点叫做格点.如图,三角形ABC的三个顶点都是格点.若一个格点P使得三角形PAB与三角形PAC的面积相等,就称P点为“好点”.那么在这张格子纸上共有6个“好点”.【分析】如下图这样,经过A点和BC边的中点画一条直线,交方格图于E点和F点,可以证得D、E、F三点都是好点;过AB点作平行线,与原来的三角形组成平行四边形,得到平行四边形ACBI,可以证得I、H、G三点也是好点.第6页(共13页)【解答】解:(1)△BDA与△CDA等底等高,所以面积相等;(2)△ABE与△ACE的面积都等于平行四边形ABCE的一半,所以面积相等;(3)△ABF的面积=△BDF的面积﹣△BDA的面积,△CAF的面积=△CDF的面积﹣△CDA的面积,又因为△BDA与△CDA面积相等,所以△ABF的面积=△CAF的面积;(4)△ABI和△ACI的面积都等于平行四边形ACBI面积的一半,所以相等;(5)△ABH的面积是△ABI面积的一半,△ACH的面积是△ACI的面积的一半,所以△ABH与△ACH面积相等;(6)△AGB和△AGC有相同底AG,这条底边上的两个三角形高是相等的,所以这两个三角形面积相等.故此题的好点一共有6个.5.对于任意一个三位数n,用表示删掉n中为0的数位得到的数.例如n=102时=12.那么满足<n且是n的约数的三位数n有93个.【分析】按题意,能满足<n且是n的约数的三位数n,有两种:第一种,十位为0,第二种,个位为0,然后再计算个数.【解答】解:根据分析,第一种,十位为0的三位数中,能满足是n的约数的n只有:105、108、405,三个数删掉0后得:15、18、45分别为105、108、405的约数;第二种,个位为0的三位数共有:9×10=90个,删掉0后均能满足是n的约数,故满足题意的三位数n有90个,综上,满足题意的三位数一共有90+3=93个.故答案是:93.6.共有12名同学玩一种扑克游戏,每次4人参加,且任意2位同学同时参加的次数不超过1.那么他们最多可以玩9次.【分析】首先分析可以将同学们进行标好,然后枚举即可.【解答】解:依题意可知:将学生进行编号1﹣12.如果是1﹣4一组,5﹣8一组,9﹣12一组下一组就没有符合题意的了,那么要求尽可能第7页(共13页)多分组.即第一次是1,2,3,4.第二次是1,5,6,7.第三次是2,5,8,9.第四组是3,6,8,10.第五组是4,5,8,11.第六组是3,5,9,10.第七组是4,6,9,11第八组是1,7,9,12第九组是2,6,10,12.故答案为:97.如果2×38能表示成k个连续正整数的和,则k的最大值为108.【分析】设k个连续正整数的首项为n,则末项为n+k﹣1.则k个连续正整数的和=(n+n+k﹣1)•k÷2=2×38,利用质因数分解即可解决问题.【解答】解:设k个连续正整数的首项为n,则末项为n+k﹣1.则k个连续正整数的和=(n+n+k﹣1)•k÷2=2×38,所以(2n+k﹣1)•k=22×38,所以k的最大值为108=22×33,此时2n+k﹣1=35,n=68,故k的最大值为108.故答案为108.8.两把小尺子组成套尺,小尺可以沿着大尺滑动.大尺上每一个单位都标有自然数,第一把小尺将大尺上的11个单位等分为10,第二把小尺将大尺上9个单位等分为10,两把小尺的起点都为0,都分别记为1至10.现测量A,B两点间距离,A点在大尺的0单位处,B点介于大尺的18与19单位之间,将第一把小尺的0单位处于B点时,其单位3怡好与大尺上某一单位相合.如果将第二把小尺的0单位处置于B点,那么第二把小尺的第7个单位怡好与大尺上某一单位相合.第8页(共13页)【分析】根据题意可:第一把小尺与大尺的单位比是11:10,第一把小尺的单位3,相当于大尺的单位3.3(根据比例求得)大尺3.3与18.7才能相加得整数,所以小尺的0对的大尺的单位是18.7.耶第二把小尺子以0单位为起点,在1到10之间找的单位对应大尺上的整数,必须是大尺的18.7加上几点3,就是说加上的这个数的小数位是3.根据大尺与第二把小尺的单位比9:10求得第二把小尺是7时,大尺的单位数才出现点3.【解答】解:11:10=?:3?=3.3那B点处在单位18与19之间的应是:18.718.7只有加上一个末位上是3的数(令其为X)才能凑整十数.?是在1一10之间的自然数,所以只有?=7符合条件.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的,甲胜出.但是,若乙得票数至少増加4票,则可胜甲,请计算甲乙所得的票数.【分析】乙得票数至少增加4票,则甲必至少减少4票,此时才能使乙胜甲,可以设一个未知数,列出关系式,求出解.【解答】解:根据分析,设甲得票数为x,则乙的得票数为,由题意得:⇒⇒x<168,又∵x为正整数,且也为正整数∴x=147,x=126,即:①甲得票数是147票,乙的得票数是140票;②甲得票数是126票,乙的得票数是120票.故答案是:甲147票,乙140票.或,甲126票,乙120票.10.如图,三角形ABC中,AB=180厘米,AC=204厘米,D、F是AB上的点,E,G是AC上的点,连结CD,DE,EF,FG,将三角形ABC分成面积相等的五个小三角形,则AF+AG为多少厘米.第9页(共13页)【分析】高一定,对应底的比等于面积比,根据五个小三角形面积相等,所以S△ADC=4S△DBC,所以AD=4BD=4×(180÷5)=144(厘米);同理,可求AE、AF、AG的长度,进而求出AF+AG的长度即可.【解答】解:在△ABC中,因为S△ADC=4S△DBC,所以AD=4BD=4×(180÷5)=144(厘米);在△ADC中,因为S△ADE=3S△EDC,所以AE=3EC=3×(204÷4)=153(厘米);在△ADE中,因为S△AFE=2S△EFD,所以AF=2DF=2×(144÷3)=96(厘米);在△AFE中,因为S△AFG=S△GFE,所以AG=GE=153÷2=76.5(厘米);所以,AF+AG=96+76.5=172.5(厘米);答:AF+AG为172.5厘米.11.某水池有甲、乙两个进水阀,只打开甲注水,10小时可将空水池注满;只打开乙,15小时可将空水池往满.现要求7个小时将空水池注满,可以只打开甲注水若干小时,接着只打开乙注水若干小时,最后同时打开甲乙注水.那么同时打开甲乙的时间是多少小时?【分析】可以先求得甲、乙每小时注的水量,即为、,总时间为7小时,同时开的时候,不难求出时间.【解答】解:根据分析,设水池注满时水的总量为1份,甲、乙每小时注水的速度分别为份/时、份/时,则甲乙同时开的时候总速度为+=,设刚开始只打开甲a小时,接着打开乙b小时,最

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功