1A(D)AAoytoytA(A)oytoyt(B)(C)AA振动习题一、选择题1、已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(tAy.则与之对应的振动曲线是[B]2、一质点作简谐振动,周期为T.当它由平衡位置向x轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为A、T/12B、T/8.C、T/6.D、T/4[C]3、将两个振动方向,振幅,周期都相同的简谐振动合成后,若合振幅和分振动的振幅相同,则这两个分振动的位相差是:A、6;B、3;C、2;D、23[D]二、填空题4、一简谐振动曲线如图所示,则由图可确定在t=2s时刻质点的位移为0,速度为3πcm/s.5、一简谐振动的旋转矢量如图所示,振幅矢量长2cm,则该简谐振动的初相为π/4.振动方程为x=2cos(πt+π/4)cm.6、一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为x=0.04cos(πt+π/2)m。三、计算题7、质量为2kg的质点,按方程)]6/(5sin[2.0tx沿着x轴振动.求:(1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.x(cm)t(s)O12346-6txOt=0t=tx(m)t(s)O0.04-0.04122解:(1))65cos(πtdtdxv)65sin(5πtdtdvaNtmaF5)65sin(520π(2)NF10maxmx2.08、一质点在x轴上作简谐振动,选取该质点向右运动通过A点时作为计时起点(t=0),经过2秒后质点第一次经过B点,再经过2秒后质点第二次经过B点,若已知该质点在A、B两点具有相同的速率,且AB=10cm求:(1)质点的振动方程;(2)质点在A点处的速率.解:(1)T=8s)/(42sradTππω设振动方程为)4cos(ψπAxt=0时,5cos0ψAx①t=2时,5)2cos(0πψAx②由①②得,1ψtg,考虑到00vπψ43代入①得,cmA25)434cos(25ππtx(cm)(2))434sin(245πππtdtdxvππ45222450v(cm/s)ABvx3波动习题1一、选择题1、一平面简谐波沿Ox正方向传播,波动表达式为]2)42(2cos[10.0xty,则该波在t=0.5s时刻的波形图是[B]x(m)O20.10y(m)(A)x(m)O20.10y(m)(B)x(m)O2-0.10y(m)(C)x(m)O2y(m)(D)-0.102、已知一平面简谐波的表达式为)cos(bxatAy(a、b为正值常量),则A、波的频率为a.B、波的传播速度为b/a.C、波长为/b.D、波的周期为2/a.[D]3、如图所示,有一平面简谐波沿x轴负方向传播,坐标原点O的振动规律为)cos(0tAy),则B点的振动方程为A、])/(cos[0uxtAy.B、)]/([cosuxtAy.C、})]/([cos{0uxtAy.D、})]/([cos{0uxtAy.[D]二、填空题4、A,B是简谐波波线上距离小于波长的两点.已知,B点振动的相位比A点落后31,波长为=3m,则A,B两点相距L=____1/2____________m.5、已知波源的振动周期为4.00×10-2s,波的传播速度为300m/s,波沿x轴正方向传播,则位于x1=10.0m和x2=16.0m的两质点振动相位差为π.6、请按频率递增的顺序,写出比可见光频率高的电磁波谱的名称___紫外线_______;_______X射线___;___γ射线______.三、计算题7、图为t=T/4时一平面简谐波的波形曲线,求其波的表达式。解:3304μλTπππω16543302T2xyuBO|x|x(m)O-0.101u=330m/sy(m)2344])360(165cos[1.0yψπxtsTt330140]3601165cos[1.00ψπy0Vπψ])360(165cos[1.0yππxt8、一平面简谐波沿x轴正向传播,波的振幅A=10cm,角频率=7rad/s.当t=1.0s时,x=10cm处的a质点正通过其平衡位置向y轴负方向运动,而x=20cm处的b质点正通过y=5.0cm点向y轴正方向运动.设该波波长10cm,求该平面波的表达式.解:设])(cos[yψυωxtAmX24.0651.022λπλπΔλπΔψsmT/84.024.0272πλωλυt=1时,346521πππφt=0时,ππππφ637340即3π所以]3)84.0(7cos[1.0yππxt5波动习题2一、选择题1、一平面简谐波在弹性媒质中传播,质元从平衡位置运动到最大位移处的过程中A、它的动能转换成热能。B、它的势能转换成动能。C、它从相邻的一段质元获得能量其能量逐渐增大。D、它把自己的能量传给相邻的一段质元,其能量逐渐减小。[D]2、图中画出一向右传播的简谐波在t时刻的波形图,反射面为波密介质,波由P点反射,则反射波在t时刻的波形图为[B]二、填空题3、在同一媒质中两列频率相同的平面简谐波的强度之比I1/I2=16则这两列波的振幅之比是A1/A2=4/1。4、如图所示,在平面波传播方向上有一障碍物AB,根据惠更斯原理,定性地绘出波绕过障碍物传播的情况.三、计算题5、在弹性媒质中有一沿x轴正向传播的平面波,其表达式为)214cos(01.0xty.若在x=5.00m处有一媒质分界面,且在分界面处反射波相位突变,设反射波的强度不变,试写出反射波的表达式.x-AP(B)x-AP(A)x-AP(C)x-AP(D)OOOOyyyyx-APByCO波线波阵面AB6解:30.01cos(4)2ytπ入入射波在反射端:10.01cos(4)2ytπ反反射波在反射端:0.01cos[4(5)]20.01cos[4]2ytxtx反反射波波动方程:6、如图所示,原点O是波源,振动方向垂直于纸面,波长是.AB为波的反射平面,反射时无相位突变.O点位于A点的正上方,hAO.Ox轴平行于AB.求Ox轴上干涉加强点的坐标(限于x≥0).解:222122()(2())22xrrhxk加强2212hxkk7、火车A以20m·s-1的速度向前行驶,A车的司机听到本车的汽笛频率为120Hz,另一火车B,以25m·s-1的速度向A迎面驶来,问B车司机听到A车汽笛的频率是多少?(设空气中声速为340m·s-1)解:13402512013734020ossuVHzuVxOhAB7光的干涉一、选择题1、有下列说法:其中正确的是A、从一个单色光源所发射的同一波面上任意选取的两点光源均为相干光源;B、从同一单色光源所发射的任意两束光,可视为两相干光束;C、只要是频率相同的两独立光源都可视为相干光源;D、两相干光源发出的光波在空间任意位置相遇都以产生干涉现象。[A]2、折射率为n2、厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,已知n1<n2<n3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(1)与(2)的光程差是A、2n2eB、2n2e-λC、2n2e-λD、2n2e-λ/2n2[A]3、用两根直径分别为d1和d2的细金属丝将两块平板玻璃垫起来。形成一个空气劈。如果将两金属丝拉近,这时:A、条纹宽度变宽,两金属丝间的条纹数变少;B、条纹宽度不变,两金属丝间的条纹数变少;C、条纹宽度变窄,两金属丝间的条纹数不变;D、条纹宽度不变,两金属丝间的条纹数不变。[C]二、填空题4、如图所示,双缝干涉实验装置中两个缝用厚度均为e,折射率分别为n1和n2的透明介质膜覆盖(n1n2),波长为λ的平行单色光照射双缝,双缝间距为d,在屏幕中央O处(S1O=S2O),两束相干光的位相差122()nne5、用波长为λ的平行单色光垂直照射折射率为n的劈尖薄膜,形成等厚干涉条纹,若测得相邻明条纹的间距为l,则劈尖角θ=arcsin()2nl6、由两块玻璃片组成空气劈形膜,当波长为的单色平行光垂直入射时,测得相邻明条纹的距离为L1。在相同的条件下,当玻璃间注满某种透明液体时,测得两相邻明条纹的距离为L2。则此液体的折射率为12LL。7、已知在迈克尔逊干涉仪中使用波长为λ的单色光,在干涉仪的可动反射镜移动一距离d过程中,干涉条纹将移动2d条。三、计算题8、在杨氏双缝干涉实验中,用波长为5.0×10-7m的单色光照射到间距为d=0.5mm的双缝上,屏到双缝中心的距离D=1.0m。求:(1)屏上中央明纹两侧第10级明纹中心之间的距离;(2)条纹宽度;(3)用一云母片(n=1.58)遮盖其中一缝,中央明纹移到原来第8级明纹中心处,云8母处的厚度是多少?解:(1)10102200.02DDxkxxmdd(2)0.001Dlmd(3)68(1)86.9101neemn9、白光垂直照射到空气中一厚度为400nm的肥皂膜上,设肥皂膜的折射率为n=1.33,试问该膜的正面呈什么颜色,背面又呈什么颜色?解:21064211222ndndknmkk正面:=210642122ndndknmkk背面:=(2+)4007601,2128()2,709()3,425()4()nmkknmknmk可见光波长范围:正面:红外红光紫光,紫外1,1064()2,532()3,355()kknmknm背面:红外黄光紫外光的衍射一、选择题1、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面元发出的子波各自传到P点的A、振动振幅之和B、光强之和C、振动振幅之和的平方D、振动的相干叠加[D]2、波长λ=5000Å的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹中心之间的距离为d=12mm,则凸透镜的焦距f为A、20mB、1mC、0.5mD、0.2m[B]3、在单缝夫琅和费衍射实验装置中,S为单缝,L为透镜,屏幕放在L的焦面处的,当把单缝S垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样A、向上平移B、向下平移C、不动D、条纹间距变大[C]4、已知光栅常数为(a+b)=6.00×10-4cm,透光孔a=1.5×10-4cm。以波长为6000Å的单色光垂直照射在光栅上,其明条纹的特点是A、不缺级,最大级数是10;B、缺2k级,最大级数是9;C、缺3k级,最大级数是10;D、缺4k级,最大级数是9[D]二、填空题5、在单缝夫琅和费衍射实验中,用波长为λ平行光垂直照射缝面,屏上P点为四级明纹中心,则在单缝处,该衍射角方向的波面可划分9半波带,若缝宽减小为原的1/3,P是1级明纹。6、波长为600nm的单色平行光,垂直入射到缝宽为a=0.60mm的单缝上,缝后有一焦距f’=60cm的透镜,在透镜焦平面上观察衍射图样。则:中央明纹的宽度为9321.210flma,两个第三级暗纹之间的距离为5233.610flma(1nm=10-9m)7、用纳光灯的纳黄光垂直照射光栅常数为d=3μm的衍射光栅,第五级谱线中纳黄光的二条线(589.0nm和589.6nm)所开的角宽度Δφ=3215()10md8、一束单色光垂直入射到光栅上,光栅的透明部分与不透明部分宽度相等,在屏上出现五条明纹,那么在中央明纹两侧的明纹分别是第1级和第3级谱线。三、计算题9、用白光(波长从400